Nonparabolic asymptotic limits of solutions of the heat equation on RN

被引:0
作者
Cazenave, Thierry
Dickstein, Flavio
Weissler, Fred B.
机构
[1] Univ Paris 13, CNRS, LAGA, UMR 7539, F-93430 Villetaneuse, France
[2] Univ Paris 06, Lab Jacques Louis Lions, CNRS, UMR 7598, F-75252 Paris 05, France
[3] Univ Fed Rio de Janeiro, Inst Matemat, BR-21944970 Rio De Janeiro, Brazil
关键词
heat equation; asymptotic behavior; resealing;
D O I
10.1007/s10884-007-9076-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we construct solutions u(t,x) of the heat equation on R-N such that t (u/2) u(t, xt(beta)) has nontrivial limit points in C-0(R-N) as t -> infinity for certain values of mu > 0 and beta > 1/2. We also show the existence of solutions of this type for nonlinear heat equations.
引用
收藏
页码:789 / 818
页数:30
相关论文
共 9 条
  • [1] CAZEAVE T, 2005, NONLINEAR DIFFERENTI, V66, P185
  • [2] Cazenave T, 2005, PROG NONLIN, V63, P135
  • [3] A solution of the constant coefficient heat equation on R with exceptional asymptotic behavior: An explicit construction
    Cazenave, T
    Dickstein, F
    Weissler, FB
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 85 (01): : 119 - 150
  • [4] Cazenave T, 2003, DISCRETE CONT DYN S, V9, P1105
  • [5] CAZENAVE T, 2001, J MATH SCI-U TOKYO, V8, P501
  • [6] Cazenave T, 2003, ANN SCUOLA NORM-SCI, V2, P77
  • [7] Cazenave T, 2005, ADV DIFFERENTIAL EQU, V10, P361
  • [8] Asymptotic behaviour of solutions of some semilinear parabolic problems
    Herraiz, L
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1999, 16 (01): : 49 - 105
  • [9] Complexity of large time behaviour of evolution equations with bounded data
    Vázquez, JL
    Zuazua, E
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (02) : 293 - 310