Statistics of impedance, local density of states, and reflection in quantum chaotic systems with absorption

被引:61
作者
Fyodorov, YV [1 ]
Savin, DV
机构
[1] Brunel Univ, Dept Math Sci, Uxbridge UB8 3PH, Middx, England
[2] Russian Acad Sci, St Petersburg Nucl Phys Inst, Gatchina 188300, Russia
[3] Univ Duisburg Gesamthsch, Fachbereich Phys, D-45117 Essen, Germany
关键词
D O I
10.1134/1.1868794
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We are interested in finding the joint distribution function of the real and imaginary parts of the local Green's function for a system with chaotic internal wave scattering and a uniform energy loss (absorption). For a microwave cavity attached to a single-mode antenna, the same quantity has a meaning of the complex cavity impedance. Using the random matrix approach, we relate its statistics to that of the reflection coefficient and scattering phase and provide exact distributions for systems with the beta = 2 and beta = 4 symmetry class. In the case of beta = 1, we provide an interpolation formula that incorporates all the known limiting cases and excellently fits the available experimental data as well as diverse numeric tests. (C) 2004 MAIK "Nauka/Interperiodica".
引用
收藏
页码:725 / 729
页数:5
相关论文
共 38 条
[1]   Spin-orbit coupling effects on quantum transport in lateral semiconductor dots [J].
Aleiner, IL ;
Fal'ko, VI .
PHYSICAL REVIEW LETTERS, 2001, 87 (25) :256801-1
[2]   The statistical theory of quantum dots [J].
Alhassid, Y .
REVIEWS OF MODERN PHYSICS, 2000, 72 (04) :895-968
[3]   CORRELATORS OF SPECTRAL DETERMINANTS IN QUANTUM CHAOS [J].
ANDREEV, AV ;
SIMONS, BD .
PHYSICAL REVIEW LETTERS, 1995, 75 (12) :2304-2307
[4]  
BARTHELEMY J, CONDMAT0401638
[5]  
BARTHELEMY J, CONDMAT0402029
[6]   Distribution of the reflection eigenvalues of a weakly absorbing chaotic cavity [J].
Beenakker, CWJ ;
Brouwer, PW .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2001, 9 (03) :463-466
[7]   RANDOM-MATRIX THEORY OF QUANTUM-SIZE EFFECTS ON NUCLEAR-MAGNETIC-RESONANCE IN METAL PARTICLES [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW B, 1994, 50 (20) :15170-15173
[8]   Spectral statistics for the Dirac operator on graphs [J].
Bolte, J ;
Harrison, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (11) :2747-2769
[9]  
BORODIN A, MATHPH0407065
[10]  
Brouwer PW, 1997, PHYS REV B, V55, P4695, DOI 10.1103/PhysRevB.55.4695