Photoelectrochemical water splitting on highly smooth and ordered TiO2 nanotube arrays for hydrogen generation

被引:234
作者
Zhang, Zhonghai [1 ]
Hossain, Md. Faruk [2 ]
Takahashi, Takakazu [1 ]
机构
[1] Toyama Univ, Grad Sch Sci & Engn Res, Toyama 9308555, Japan
[2] Toyama Univ, Grad Sch Sci & Engn Educ, Toyama 9308555, Japan
基金
日本学术振兴会;
关键词
TiO2; nanotube; Anodization; Photoelectrochemical water splitting; Hydrogen generation; NANOWIRE ARRAYS; PHOTOELECTROCATALYTIC ACTIVITY; TITANIA NANOTUBES; THIN-FILMS; FABRICATION; OXIDE; PHOTOOXIDATION; ANODIZATION; STABILITY; HEMATITE;
D O I
10.1016/j.ijhydene.2010.03.032
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
To improve the photoelectrochemical (PEC) water splitting efficiency for hydrogen production, we reported the fabrication of lotus-root-shaped, highly smooth and ordered TiO2 nanotube arrays (TiO2 NTs) by a simple and effective two-step anodization method. The TiO2 NTs prepared in the two-step anodization process (2-step TiO2 NTs) showed better surface smoothness and tube orderliness than those of TiO2 NTs prepared in one-step anodization process (1-step TiO2 NTs). Under illumination of 100 mW/cm(2) (AM 1.5, simulated solar light) in 1 M KOH solution, water was oxidized on the 2-step TiO2 NTs electrode with higher efficiency (incident-photon-to-current efficiency of 43.4% at 360 nm and photocurrent density of 0.90 mA/cm(2) at 1.23 V-RHE) than that on the 1-step TiO2 NTs electrode. The effective photon-to-hydrogen conversion efficiency was found to be 0.18% and 0.49% for 1-step TiO2 NTs and 2-step TiO2 NTs, respectively. These results suggested that the structural smoothness and orderliness of TiO2 NTs played an important role in improving the PEC water splitting application for hydrogen generation. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8528 / 8535
页数:8
相关论文
共 45 条
[1]   Growth of aligned TiO2 bamboo-type nanotubes and highly ordered nanolace [J].
Albu, Sergiu R. ;
Kim, Doohun ;
Schmuki, Patrik .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (10) :1916-1919
[2]   The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation [J].
Cai, QY ;
Paulose, M ;
Varghese, OK ;
Grimes, CA .
JOURNAL OF MATERIALS RESEARCH, 2005, 20 (01) :230-236
[3]   WO3 and W2N nanowire arrays for photoelectrochemical hydrogen production [J].
Chakrapani, Vidhya ;
Thangala, Jyothish ;
Sunkara, Mahendra K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (22) :9050-9059
[4]   Evaluation of nitrogen doping of tungsten oxide for photoelectrochemical water splitting [J].
Cole, Brian ;
Marsen, Bjorn ;
Miller, Eric ;
Yan, Yanfa ;
To, Bobby ;
Jones, Kim ;
Al-Jassim, Mowafak .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (13) :5213-5220
[5]  
Cullity B.D., 1978, ELEMENTS XRAY DIFFRA, P283
[6]  
Des Marais DJ, 2000, SCIENCE, V289, P1703
[7]   Hydrogen production by photocatalytic water-splitting using Cr- or Fe-doped TiO2 composite thin films photocatalyst [J].
Dholam, R. ;
Patel, N. ;
Adami, M. ;
Miotello, A. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (13) :5337-5346
[8]  
Fujishima A., 1972, Nature, V37, P238
[9]   Photocatalytic Overall Water Splitting under Visible Light Using ATaO2N (A = Ca, Sr, Ba) and WO3 in a IO3-/I- Shuttle Redox Mediated System [J].
Higashi, Masanobu ;
Abe, Ryu ;
Takata, Tsuyoshi ;
Domen, Kazunari .
CHEMISTRY OF MATERIALS, 2009, 21 (08) :1543-1549
[10]   Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting [J].
Hu, Yong-Sheng ;
Kleiman-Shwarsctein, Alan ;
Forman, Arnold J. ;
Hazen, Daniel ;
Park, Jung-Nam ;
McFarland, Eric W. .
CHEMISTRY OF MATERIALS, 2008, 20 (12) :3803-3805