HERMITS-HADAMARD TYPE INEQUALITIES FOR MULTIDIMENSIONAL STRONGLY h-CONVEX FUNCTIONS

被引:7
作者
Feng, Mengjie [1 ]
Ruan, Jianmiao [1 ]
Ma, Xinsheng [1 ]
机构
[1] Zhejiang Int Studies Univ, Dept Math, Hangzhou 310012, Peoples R China
来源
MATHEMATICAL INEQUALITIES & APPLICATIONS | 2021年 / 24卷 / 04期
基金
中国国家自然科学基金;
关键词
Strongly h -convex function; Hermite-Hadamard's inequality; high-dimensional balls; high-dimensional ellipsoids; THEOREMS; SETS;
D O I
10.7153/mia-2021-24-62
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish some Hermite-Hadarnard type inequalities for strongly h-convex function on balls and ellipsoids, which extend some known results. Some mappings connected with these inequalities and related applications are also obtained.
引用
收藏
页码:897 / 911
页数:15
相关论文
共 29 条
[1]  
Alomari M., 2008, Int. J. Math. Anal, V2, P629
[2]   ON STRONGLY h-CONVEX FUNCTIONS [J].
Angulo, Hiliana ;
Gimenez, Jose ;
Moros, Ana Milena ;
Nikodem, Kazimierz .
ANNALS OF FUNCTIONAL ANALYSIS, 2011, 2 (02) :85-91
[3]  
Breckner W. W., 1978, PUBL I MATH, V23, P13
[4]  
Burai P, 2011, J CONVEX ANAL, V18, P447
[5]  
Dragomir S.-S., 1999, DEMONSTR MATH, V32, P687, DOI [DOI 10.1515/dema-1999-0403, DOI 10.1515/DEMA-1999-0403]
[6]  
Dragomir S.S., 2000, J OFINEQ PURE APPL M, V1, P2
[7]   On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane [J].
Dragomir, SS .
TAIWANESE JOURNAL OF MATHEMATICS, 2001, 5 (04) :775-788
[8]  
Dragomir SS, 2000, MATH INEQUAL APPL, V3, P177
[9]  
GODUNOVA EK, 1985, VYCISLITEL MAT MAT F, P138
[10]   BERNSTEIN-DOETSCH TYPE RESULTS FOR h-CONVEX FUNCTIONS [J].
Hazy, Attila .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2011, 14 (03) :499-508