Predicting the rotation profile in ITER

被引:29
作者
Chrystal, C. [1 ]
Grierson, B. A. [2 ]
Haskey, S. R. [2 ]
Sontag, A. C. [3 ]
Poli, F. M. [2 ]
Shafer, M. W. [3 ]
deGrassie, J. S. [1 ]
机构
[1] Gen Atom, POB 85608, San Diego, CA 92186 USA
[2] Princeton Plasma Phys Lab, POB 451, Princeton, NJ 08543 USA
[3] Oak Ridge Natl Lab, POB 2008, Oak Ridge, TN 37831 USA
关键词
plasma rotation; ITER; intrinsic rotation; TOROIDAL ROTATION; TRANSPORT; TOKAMAK;
D O I
10.1088/1741-4326/ab6434
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Determining the toroidal rotation for future tokamaks like ITER is a challenging and important problem. By combining empirical scalings for the intrinsic rotation at the top of the pedestal with the expected neutral beam torque and modeling of momentum transport, the toroidal rotation profile for ITER is predicted with TGYRO using TGLF (SAT0 and SAT1). On axis rotation exceeds 20 krad s(-1) and the shear is significant enough to reduce turbulent transport and significantly increase confinement and fusion power when comparing to cases that ignore the effect of rotation. The prediction of the rotation at the top of the pedestal is made with increased confidence due to experiments and modeling in DIII-D that have determined the importance of fast-ion and neutral particle transport effects on intrinsic rotation at this location. In particular, the effect of neutral particles on momentum transport in the pedestal region is found to be insignificant.
引用
收藏
页数:11
相关论文
共 64 条
[1]   Neoclassical transport of heavy impurities with poloidally asymmetric density distribution in tokamaks [J].
Angioni, C. ;
Helander, P. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2014, 56 (12)
[2]   Analytic formulae for centrifugal effects on turbulent transport of trace impurities in tokamak plasmas [J].
Angioni, C. ;
Casson, F. J. ;
Veth, C. ;
Peeters, A. G. .
PHYSICS OF PLASMAS, 2012, 19 (12)
[3]  
Ashourvan A., 2018, COMMUNICATION
[4]   Validation of the kinetic-turbulent-neoclassical theory for edge intrinsic rotation in DIII-D [J].
Ashourvan, Arash ;
Grierson, B. A. ;
Battaglia, D. J. ;
Haskey, S. R. ;
Stoltzfus-Dueck, T. .
PHYSICS OF PLASMAS, 2018, 25 (05)
[5]   Kinetic calculation of neoclassical transport including self-consistent electron and impurity dynamics [J].
Belli, E. A. ;
Candy, J. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2008, 50 (09)
[6]   Resistive Wall Mode Instability at Intermediate Plasma Rotation [J].
Berkery, J. W. ;
Sabbagh, S. A. ;
Betti, R. ;
Hu, B. ;
Bell, R. E. ;
Gerhardt, S. P. ;
Manickam, J. ;
Tritz, K. .
PHYSICAL REVIEW LETTERS, 2010, 104 (03)
[7]   Experimental evidence of edge intrinsic momentum source driven by kinetic ion loss and edge radial electric fields in tokamaks [J].
Boedo, J. A. ;
deGrassie, J. S. ;
Grierson, B. ;
Stoltzfus-Dueck, T. ;
Battaglia, D. J. ;
Rudakov, D. L. ;
Belli, E. A. ;
Groebner, R. J. ;
Hollmann, E. ;
Lasnier, C. ;
Solomon, W. M. ;
Unterberg, E. A. ;
Watkins, J. .
PHYSICS OF PLASMAS, 2016, 23 (09)
[8]   Presentation of the New SOLPS-ITER Code Package for Tokamak Plasma Edge Modelling [J].
Bonnin, Xavier ;
Dekeyser, Wouter ;
Pitts, Richard ;
Coster, David ;
Voskoboynikov, Serguey ;
Wiesen, Sven .
PLASMA AND FUSION RESEARCH, 2016, 11 :1-6
[9]   Predictions of H-mode performance in ITER [J].
Budny, R. V. ;
Andre, R. ;
Bateman, G. ;
Halpern, F. ;
Kessel, C. E. ;
Kritz, A. ;
McCune, D. .
NUCLEAR FUSION, 2008, 48 (07)