Generalized cluster states based on finite groups

被引:18
作者
Brell, Courtney G. [1 ,2 ]
机构
[1] Univ Sydney, Sch Phys, Ctr Engn Quantum Syst, Sydney, NSW 2006, Australia
[2] Leibniz Univ Hannover, Inst Theoret Phys, D-30167 Hannover, Germany
来源
NEW JOURNAL OF PHYSICS | 2015年 / 17卷
关键词
measurement-based quantum computation; fault-tolerant quantum computation; topological computation; UNIVERSAL QUANTUM COMPUTATION; ERROR-CORRECTING CODES; CLASSICAL SIMULATIONS; NORMALIZER CIRCUITS; ANYONS;
D O I
10.1088/1367-2630/17/2/023029
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define generalized cluster states based on finite group algebras in analogy to the generalization of the toric code to the Kitaev quantum double models. We do this by showing a general correspondence between systems with CSS structure and finite group algebras, and applying this to the cluster states to derive their generalization. We then investigate properties of these states including their projected entangled pair state representations, global symmetries, and relationship to the Kitaev quantum double models. We also discuss possible applications of these states.
引用
收藏
页数:20
相关论文
共 59 条
  • [1] VALENCE BOND GROUND-STATES IN ISOTROPIC QUANTUM ANTIFERROMAGNETS
    AFFLECK, I
    KENNEDY, T
    LIEB, EH
    TASAKI, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 115 (03) : 477 - 528
  • [2] Computational Power of Correlations
    Anders, Janet
    Browne, Dan E.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (05)
  • [3] Adiabatic graph-state quantum computation
    Antonio, B.
    Markham, D.
    Anders, J.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [4] Adiabatic Quantum Transistors
    Bacon, Dave
    Flammia, Steven T.
    Crosswhite, Gregory M.
    [J]. PHYSICAL REVIEW X, 2013, 3 (02):
  • [5] Adiabatic cluster-state quantum computing
    Bacon, Dave
    Flammia, Steven T.
    [J]. PHYSICAL REVIEW A, 2010, 82 (03):
  • [6] Twist defects and projective non-Abelian braiding statistics
    Barkeshli, Maissam
    Jian, Chao-Ming
    Qi, Xiao-Liang
    [J]. PHYSICAL REVIEW B, 2013, 87 (04)
  • [7] Simple nearest-neighbor two-body Hamiltonian system for which the ground state is a universal resource for quantum computation
    Bartlett, Stephen D.
    Rudolph, Terry
    [J]. PHYSICAL REVIEW A, 2006, 74 (04):
  • [8] Bermejo-Vega J, 2014, ARXIV14093208
  • [9] Bermejo-Vega J, 2014, QUANTUM INF COMPUT, V14, P181
  • [10] Topological quantum distillation
    Bombin, H.
    Martin-Delgado, M. A.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (18)