Multipartite nonlocality and topological quantum phase transitions in a spinless fermion quantum wire with uniform and incommensurate potentials

被引:1
作者
Sun, Zhao-Yu [1 ]
Huang, Hai-Lin [1 ]
Wen, Hui-Xin [1 ]
Li, Meng [1 ]
Zhao, Xu [1 ]
Cheng, Hong-Guang [1 ]
Zhang, Duo [1 ]
Guo, Bin [2 ]
机构
[1] Wuhan Polytech Univ, Sch Elect & Elect Engn, Wuhan 430023, Peoples R China
[2] Wuhan Univ Technol, Dept Phys, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
BELLS-INEQUALITY; ENTANGLEMENT; COLLOQUIUM; VIOLATION;
D O I
10.1103/PhysRevA.106.022208
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Multipartite nonlocality and Bell-type inequalities are used to characterize topological quantum phase transitions (QPTs) in a spinless fermion quantum wire, where both uniform potentials and incommensurate potentials are considered. First, the nonlocality measures show clear signals at the critical points in both the uniform model and the incommensurate model. It indicates that these QPTs are accompanied by dramatic changes of multipartite quantum correlations in the ground states. Second, finite-size scaling analysis is carried out. In particular, in the incommensurate model where translation invariance is broken, with some rescaling techniques, we successfully establish the scaling formula in the large-L limit. Finally, the full phase diagram of the model with mixed potentials is figured out. We find a region which is featured with strong randomness in the large-L limit. The structure of this region is revealed by analyzing the energy spectrum, and an efficient approach to characterize this region is proposed.
引用
收藏
页数:16
相关论文
共 61 条
[1]   Violation of Bell's inequality in Josephson phase qubits [J].
Ansmann, Markus ;
Wang, H. ;
Bialczak, Radoslaw C. ;
Hofheinz, Max ;
Lucero, Erik ;
Neeley, M. ;
O'Connell, A. D. ;
Sank, D. ;
Weides, M. ;
Wenner, J. ;
Cleland, A. N. ;
Martinis, John M. .
NATURE, 2009, 461 (7263) :504-506
[2]   Definitions of multipartite nonlocality [J].
Bancal, Jean-Daniel ;
Barrett, Jonathan ;
Gisin, Nicolas ;
Pironio, Stefano .
PHYSICAL REVIEW A, 2013, 88 (01)
[3]   Detecting Genuine Multipartite Quantum Nonlocality: A Simple Approach and Generalization to Arbitrary Dimensions [J].
Bancal, Jean-Daniel ;
Brunner, Nicolas ;
Gisin, Nicolas ;
Liang, Yeong-Cherng .
PHYSICAL REVIEW LETTERS, 2011, 106 (02)
[4]   Quantifying Multipartite Nonlocality [J].
Bancal, Jean-Daniel ;
Branciard, Cyril ;
Gisin, Nicolas ;
Pironio, Stefano .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)
[5]   Multipartite nonlocality and global quantum discord in the antiferromagnetic Lipkin-Meshkov-Glick model [J].
Bao, Jia ;
Guo, Bin ;
Liu, Yan-Hong ;
Shen, Long-Hui ;
Sun, Zhao-Yu .
PHYSICA B-CONDENSED MATTER, 2020, 593
[6]   Multipartite nonlocality in the Lipkin-Meshkov-Glick model [J].
Bao, Jia ;
Guo, Bin ;
Cheng, Hong-Guang ;
Zhou, Mu ;
Fu, Jin ;
Deng, Yi-Chen ;
Sun, Zhao-Yu .
PHYSICAL REVIEW A, 2020, 101 (01)
[7]   Nonlocality and entanglement in qubit systems [J].
Batle, J. ;
Casas, M. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (44)
[8]   The ALPS project release 2.0: open source software for strongly correlated systems [J].
Bauer, B. ;
Carr, L. D. ;
Evertz, H. G. ;
Feiguin, A. ;
Freire, J. ;
Fuchs, S. ;
Gamper, L. ;
Gukelberger, J. ;
Gull, E. ;
Guertler, S. ;
Hehn, A. ;
Igarashi, R. ;
Isakov, S. V. ;
Koop, D. ;
Ma, P. N. ;
Mates, P. ;
Matsuo, H. ;
Parcollet, O. ;
Pawlowski, G. ;
Picon, J. D. ;
Pollet, L. ;
Santos, E. ;
Scarola, V. W. ;
Schollwoeck, U. ;
Silva, C. ;
Surer, B. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Wall, M. L. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[9]  
Belinskii A. V., 1993, Physics-Uspekhi, V36, P653, DOI 10.1070/PU1993v036n08ABEH002299
[10]   Genuinely Multipartite Entangled Quantum States with Fully Local Hidden Variable Models and Hidden Multipartite Nonlocality [J].
Bowles, Joseph ;
Francfort, Jeremie ;
Fillettaz, Mathieu ;
Hirsch, Flavien ;
Brunner, Nicolas .
PHYSICAL REVIEW LETTERS, 2016, 116 (13)