Palladium Clusters Supported on Graphene Monovacancies for Hydrogen Storage

被引:77
作者
Ramos-Castillo, C. M. [1 ]
Reveles, J. U. [2 ,3 ]
Zope, R. R. [3 ]
de Coss, R. [1 ]
机构
[1] Cinvestav Merida, Dept Appl Phys, Merida 97310, Yucatan, Mexico
[2] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA
[3] Univ Texas El Paso, Dept Phys, El Paso, TX 79958 USA
基金
美国国家科学基金会;
关键词
CARBON NANOTUBES;
D O I
10.1021/acs.jpcc.5b02358
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We give a detailed description of the atomic structure and the energetics of H-2 adsorption on Pd-n (n = 14) clusters supported on graphene monovacancies. The large binding energy of small Pdn clusters on these vacancies is a result of strong hybridization between the unsaturated carbon and the Pd atoms, and it further indicates that anchoring avoids migration of Pd clusters on the graphene surface. We found that the binding energy of a single H-2 is dependent on both the Pd cluster size and the adsorption site. In general, the H-2 bond cleavage is favored by Pd clusters, indicating the formation of metal hydrides. Our calculations predict that the sequential binding energy of H-2 decreases from 1.2 to 0.085 eV as a function of the number of adsorbed molecules and that the graphene surface modulates the metal-hydrogen interaction. The analysis of the absorption energies and H-2 average bond lengths suggest that the supported Pd-4 cluster is a unique species and potential hydrogen storage candidate because it is able to hold up to four molecules covalently with moderate average binding energy within the optimal range for an efficient cyclic adsorption/desorption process at room temperature and moderate pressures. These results show that the interaction between graphene monovacancies and metal nanoparticles can explain the role that defects play in the dramatic enhancement of hydrogen storage in metal-decorated graphene samples.
引用
收藏
页码:8402 / 8409
页数:8
相关论文
共 33 条
[1]   Breit interaction in dielectronic recombination of hydrogenlike uranium [J].
Bernhardt, D. ;
Brandau, C. ;
Harman, Z. ;
Kozhuharov, C. ;
Mueller, A. ;
Scheid, W. ;
Schippers, S. ;
Schmidt, E. W. ;
Yu, D. ;
Artemyev, A. N. ;
Tupitsyn, I. I. ;
Boehm, S. ;
Bosch, F. ;
Currell, F. J. ;
Franzke, B. ;
Gumberidze, A. ;
Jacobi, J. ;
Mokler, P. H. ;
Nolden, F. ;
Spillman, U. ;
Stachura, Z. ;
Steck, M. ;
Stoehlker, Th. .
PHYSICAL REVIEW A, 2011, 83 (02)
[2]   Optimum conditions for adsorptive storage [J].
Bhatia, SK ;
Myers, AL .
LANGMUIR, 2006, 22 (04) :1688-1700
[3]   Adsorption and Dissociation of Molecular Hydrogen on Palladium Clusters Supported on Graphene [J].
Cabria, I. ;
Lopez, M. J. ;
Fraile, S. ;
Alonso, J. A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (40) :21179-21189
[4]   First-principles study of metal adatom adsorption on graphene [J].
Chan, Kevin T. ;
Neaton, J. B. ;
Cohen, Marvin L. .
PHYSICAL REVIEW B, 2008, 77 (23)
[5]   High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures [J].
Chen, P ;
Wu, X ;
Lin, J ;
Tan, KL .
SCIENCE, 1999, 285 (5424) :91-93
[6]   Single Pd atoms in activated carbon fibers and their contribution to hydrogen storage [J].
Contescu, Cristian I. ;
van Benthem, Klaus ;
Li, Sa ;
Bonifacio, Cecile S. ;
Pennycook, Stephen J. ;
Jena, Puru ;
Gallego, Nidia C. .
CARBON, 2011, 49 (12) :4050-4058
[7]   Storage of hydrogen in single-walled carbon nanotubes [J].
Dillon, AC ;
Jones, KM ;
Bekkedahl, TA ;
Kiang, CH ;
Bethune, DS ;
Heben, MJ .
NATURE, 1997, 386 (6623) :377-379
[8]   Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J].
Grimme, Stefan .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) :1787-1799
[9]   INHOMOGENEOUS ELECTRON-GAS [J].
RAJAGOPAL, AK ;
CALLAWAY, J .
PHYSICAL REVIEW B, 1973, 7 (05) :1912-1919
[10]   Materials for Hydrogen Storage: Past, Present, and Future [J].
Jena, Puru .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (03) :206-211