The Weighted Matching Approach to Maximum Cardinality Matching

被引:15
作者
Gabow, Harold N. [1 ]
机构
[1] Univ Colorado, Dept Comp Sci, Boulder, CO 80309 USA
关键词
D O I
10.3233/FI-2017-1555
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Several papers have achieved time O (root nm) for cardinality matching, starting from first principles. This results in a long derivation. We simplify the task by employing well-known concepts for maximum weight matching. We use Edmonds' algorithm to derive the structure of shortest augmenting paths. We extend this to a complete algorithm for maximum cardinality matching in time O (root nm).
引用
收藏
页码:109 / 130
页数:22
相关论文
共 13 条
[1]  
[Anonymous], 2001, Combinatorial optimization: networks and matroids
[2]  
Cook W., 1998, COMBINATORIAL OPTIMI
[3]   MAXIMUM MATCHING AND A POLYHEDRON WITH O'1-VERTICES [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :125-+
[4]  
GABOW HN, 1991, J ACM, V38, P815, DOI 10.1145/115234.115366
[5]   A LINEAR-TIME ALGORITHM FOR A SPECIAL CASE OF DISJOINT SET UNION [J].
GABOW, HN ;
TARJAN, RE .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1985, 30 (02) :209-221
[6]   Maximum skew-symmetric flows and matchings [J].
Goldberg, AV ;
Karzanov, AV .
MATHEMATICAL PROGRAMMING, 2004, 100 (03) :537-568
[7]  
Hopcroft J. E., 1973, SIAM Journal on Computing, V2, P225, DOI 10.1137/0202019
[8]  
Karzanov AV, 1976, FINDING MAXIMUM FLOW, V5, P81
[9]  
Micali S., 1980, 21st Annual Symposium on Foundations of Computer Science, P17
[10]  
Schrijver A, 2003, COMBINATORIAL OPTIMI, VA