Effects of nanoparticles Brownian motion in a linearly/sinusoidally heated cavity with MHD natural convection in the presence of uniform heat generation/absorption

被引:40
作者
Mliki, Bouchmel [1 ]
Abbassi, Mohamed Ammar [1 ]
Omri, Ahmed [1 ]
Zeghmati, Belkacem [2 ]
机构
[1] Fac Sci Gafsa, UR Unite Rech Mat Energie & Energies Renouvelable, BP 19, Zarroug 2112, Gafsa, Tunisia
[2] Univ Perpignan, LAMPS, Via Domitia,52 Ave Paul Alduy, F-66860 Perpignan, France
关键词
Brownian motion; Heat transfer; Linearly/sinusoidally heated cavity; Lattice Boltzmann Method; Natural convection; Nanofluid; LATTICE BOLTZMANN SIMULATION; NANOFLUID-FILLED CAVITY; MAGNETIC-FIELD; ENTROPY GENERATION; BOUNDARY-CONDITION; PERISTALTIC FLOW; ENCLOSURE; RADIATION; MAGNETOHYDRODYNAMICS; AUGMENTATION;
D O I
10.1016/j.powtec.2016.03.038
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
In this numerical work, natural convection of CuO-water nanofluid and pure water in a cavity submitted to different heating modes on its vertical walls, is analyzed using the Lattice Boltzmann Method (LBM). The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo-Kleinstreuer-Li) correlation. The influence of pertinent parameters such as Rayleigh number (Ra = 10(3)-10(6)), Hartmann number (Ha = 0-80), heat generation or absorption coefficient (q = -10, -5, 0, 5, 10) and nanoparticle volume concentration (phi = 0-0.04) on the flow and heat transfer characteristics has been examined. In general, by considering the role of Brownian motion, the enhancement in heat transfer is observed at any Hartman and Rayleigh numbers. In addition, the heat generation or absorption influences the heat transfer in the cavity at Ra = 10(3) more than other Rayleigh numbers as the least effect is observed at Ra = 10(6). (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:69 / 83
页数:15
相关论文
共 47 条
[1]   Natural convection of nanofluids in a shallow cavity heated from below [J].
Alloui, Z. ;
Vasseur, P. ;
Reggio, M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (03) :385-393
[2]   THE VISCOSITY OF CONCENTRATED SUSPENSIONS AND SOLUTIONS [J].
BRINKMAN, HC .
JOURNAL OF CHEMICAL PHYSICS, 1952, 20 (04) :571-571
[3]   A Simple Finite-Volume Formulation of the Lattice Boltzmann Method for Laminar and Turbulent Flows [J].
Choi, Seok-Ki ;
Lin, Ching-Long .
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2010, 58 (04) :242-261
[4]   Numerical investigation of natural convection heat transfer of nanofluids in a Γ shaped cavity [J].
Dehnavi, Resam ;
Rezvani, Abdollah .
SUPERLATTICES AND MICROSTRUCTURES, 2012, 52 (02) :312-325
[5]   EFFECTS OF MAGNETOHYDRODYNAMICS ON PERISTALTIC FLOW OF JEFFREY FLUID IN A RECTANGULAR DUCT THROUGH A POROUS MEDIUM [J].
Ellahi, R. ;
Bhatti, M. Mubashir ;
Riaz, Arshad ;
Sheikholeslami, M. .
JOURNAL OF POROUS MEDIA, 2014, 17 (02) :143-157
[6]   Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct [J].
Ellahi, R. ;
Bhatti, M. Mubashir ;
Vafai, K. .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2014, 71 :706-719
[7]   Magnetic field effect on natural convection in a nanofluid-filled square enclosure [J].
Ghasemi, B. ;
Aminossadati, S. M. ;
Raisi, A. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (09) :1748-1756
[8]   Brownian motion of nanoparticles in a triangular enclosure with natural convection [J].
Ghasemi, B. ;
Aminossadati, S. M. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (06) :931-940
[9]   An analytical solution for boundary layer flow of a nanofluid past a stretching sheet [J].
Hassani, M. ;
Tabar, M. Mohammad ;
Nemati, H. ;
Domairry, G. ;
Noori, F. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2011, 50 (11) :2256-2263
[10]   Strong coupling among semiconductor quantum dots induced by a metal nanoparticle [J].
He, Yong ;
Zhu, Ka-Di .
NANOSCALE RESEARCH LETTERS, 2012, 7 :1-6