On the numerical robustness of the parallel projection method in signal synthesis

被引:31
作者
Combettes, PL [1 ]
机构
[1] Univ Paris 06, Anal Numer Lab, F-75005 Paris, France
[2] CUNY City Coll, New York, NY 10031 USA
[3] CUNY, Grad Ctr, New York, NY 10031 USA
基金
美国国家科学基金会;
关键词
convex constraint; numerical errors; parallel computing; projection; signal recovery; signal synthesis;
D O I
10.1109/97.895371
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The parallel projection method (PPM) uses successive averages of projections onto constraint sets to construct a signal that least violates these constraints in an average squared-distance sense. In this paper, we study the robustness of PPM to errors in the computation of the projections. It is shown that the convergence properties of PPM remain valid under a simple summability condition on the relaxed averages of the errors.
引用
收藏
页码:45 / 47
页数:3
相关论文
共 11 条
[1]  
[Anonymous], VECTOR SPACE PROJECT
[2]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[3]  
COMBETTES PL, 1993, P IEEE, V81, P182, DOI 10.1109/5.214546
[4]   Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections [J].
Combettes, PL .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 1997, 6 (04) :493-506
[5]   INCONSISTENT SIGNAL FEASIBILITY PROBLEMS - LEAST-SQUARES SOLUTIONS IN A PRODUCT SPACE [J].
COMBETTES, PL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) :2955-2966
[6]  
Combettes PL., 1996, ADV IMAG ELECT PHYS, P155, DOI DOI 10.1016/S1076-5670(08)70157-5
[7]   SIGNAL SYNTHESIS IN THE PRESENCE OF AN INCONSISTENT SET OF CONSTRAINTS [J].
GOLDBURG, M ;
MARKS, RJ .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1985, 32 (07) :647-663
[8]  
Golshtein E. G., 1996, MODIFIED LAGRANGIANS
[9]  
HERMAN GT, 1980, IMAGE RECONSTRUCTION
[10]   THE FEASIBLE SOLUTION IN SIGNAL RESTORATION [J].
TRUSSELL, HJ ;
CIVANLAR, MR .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1984, 32 (02) :201-212