ARBITRARY-ORDER NODAL MIMETIC DISCRETIZATIONS OF ELLIPTIC PROBLEMS ON POLYGONAL MESHES

被引:83
作者
Da Veiga, L. Beirao [1 ]
Lipnikov, K. [2 ]
Manzini, G. [3 ]
机构
[1] Univ Milan, Dipartimento Matemat F Enriques, I-20133 Milan, Italy
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[3] CNR, Ist Matemat Applicata Tecnol Informat IMATI, I-27100 Pavia, Italy
关键词
diffusion problem; Poisson equation; mimetic finite difference method; polygonal mesh; generalized mesh; high-order scheme; FINITE-DIFFERENCE METHOD; DIFFUSION-PROBLEMS; CONVERGENCE ANALYSIS; ELEMENT STRATEGY; ERROR ESTIMATOR; STOKES PROBLEM; APPROXIMATION;
D O I
10.1137/100807764
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop and analyze a new family of mimetic methods on unstructured polygonal meshes for the diffusion problem in primal form. These methods are derived from the local consistency condition that is exact for polynomials of any degree m >= 1. The degrees of freedom are (a) solution values at the quadrature nodes of the Gauss-Lobatto formulas on each mesh edge, and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived in a mesh-dependent norm that mimics the energy norm. Numerical experiments confirm the convergence rate that is expected from the theory.
引用
收藏
页码:1737 / 1760
页数:24
相关论文
共 44 条
[1]   Multiscale mixed/mimetic methods on corner-point grids [J].
Aarnes, Jorg E. ;
Krogstad, Stein ;
Lie, Knut-Andreas .
COMPUTATIONAL GEOSCIENCES, 2008, 12 (03) :297-315
[2]  
Abramowitz M., 1964, HDB MATH FUNCTIONS F
[3]  
Agmon S., 1965, Lectures on Elliptic Boundary Value Problems. Van Nostrand Mathematical Studies
[4]  
[Anonymous], 1985, MONOGRAPHS STUDIES M
[5]  
BEIRAO DA VEIGA L., IMA J NUMER IN PRESS
[6]   LOCAL ADAPTIVE MESH REFINEMENT FOR SHOCK HYDRODYNAMICS [J].
BERGER, MJ ;
COLELLA, P .
JOURNAL OF COMPUTATIONAL PHYSICS, 1989, 82 (01) :64-84
[7]  
BOCHEV P, 2006, IMA MATH APPL, V142
[8]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[9]   Convergence of mimetic finite difference method for diffusion problems on polyhedral meshes with curved faces [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2006, 16 (02) :275-297
[10]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896