Congruences for modular forms and generalized Frobenius partitions

被引:8
作者
Jameson, Marie [1 ]
Wieczorek, Maggie [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
Generalized Frobenius partitions; Congruences; Weakly holomorphic modular forms; Subbarao's conjecture; Partitions;
D O I
10.1007/s11139-019-00174-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The partition function is known to exhibit beautiful congruences that are often proved using the theory of modular forms. In this paper, we study the extent to which these congruence results apply to the generalized Frobenius partitions defined by Andrews (Mem Am Math Soc 49(301):iv+44, 1984). In particular, we prove that there are infinitely many congruences for cfk (n) modulo similar to, where gcd(similar to, 6k) = 1, and we also prove results on the parity of cfk (n). Along the way, we prove results regarding the parity of coefficients of weakly holomorphic modular forms which generalize work of Ono ( J Reine Angew Math 472:1-15, 1996).
引用
收藏
页码:541 / 553
页数:13
相关论文
共 21 条
[1]   Arithmetic properties of the partition function [J].
Ahlgren, S ;
Boylan, M .
INVENTIONES MATHEMATICAE, 2003, 153 (03) :487-502
[2]   Congruence properties for the partition function [J].
Ahlgren, S ;
Ono, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (23) :12882-12884
[3]  
ANDREWS GE, 1984, MEM AM MATH SOC, V49, P1
[4]   MODULAR FORMS AND k-COLORED GENERALIZED FROBENIUS PARTITIONS [J].
Chan, Heng Huat ;
Wang, Liuquan ;
Yang, Yifan .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) :2159-2205
[5]   Congruence properties for a certain kind of partition functions [J].
Cui, Su-Ping ;
Gu, Nancy S. S. ;
Huang, Anthony X. .
ADVANCES IN MATHEMATICS, 2016, 290 :739-772
[6]   Non-Existence of Ramanujan Congruences in Modular Forms of Level Four [J].
Dewar, Michael .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2011, 63 (06) :1284-1306
[7]  
Gordon B., 1993, CONT MATH, V143, P415, DOI [10.1090/conm/143/01008, DOI 10.1090/CONM/143/01008]
[8]  
Koblitz N, 1993, GRADUATE TEXTS MATH, V97, DOI [10.1007/978-1-4612-0909-6, DOI 10.1007/978-1-4612-0909-6]
[9]   A RELATIONSHIP BETWEEN CERTAIN COLORED GENERALIZED FROBENIUS PARTITIONS AND ORDINARY PARTITIONS [J].
KOLITSCH, LW .
JOURNAL OF NUMBER THEORY, 1989, 33 (02) :220-223
[10]   M-ORDER GENERALIZED FROBENIUS PARTITIONS WITH M-COLORS [J].
KOLITSCH, LW .
JOURNAL OF NUMBER THEORY, 1991, 39 (03) :279-284