Profiling intra-patient type I diabetes behaviors

被引:14
作者
Contreras, Ivan [1 ]
Quiros, Carmen [2 ]
Gimenez, Marga [2 ]
Conget, Ignacio [2 ]
Vehi, Josep [1 ]
机构
[1] Univ Girona, Inst Informat & Aplicac, Campus Montilivi, Girona, Spain
[2] Hosp Clin & Univ, Diabet Unit, Endocrinol & Nutr Dept, Barcelona, Spain
关键词
Type; 1; diabetes; Continuous glucose monitoring; Insulin pumps; Time series prediction; Clustering; TIME-SERIES; GLUCOSE;
D O I
10.1016/j.cmpb.2016.08.022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Background: The large infra-patient variability in type 1 diabetic patients dramatically reduces the ability to achieve adequate blood glucose control. A novel methodology to identify different blood glucose dynamics profiles will allow therapies to be more accurate and tailored according to patient's conditions and to the situations faced by patients (exercise, weekends, holidays, menstruation, etc). Materials and methods: A clustering methodology based on the normalized compression distance is applied to identify different profiles for diabetic patients. First, the methodology is validated using "in silico" data from 10 patients in 3 different scenarios: days without exercise, poor controlled exercise days and days with well-controlled exercise. Second, we perform a series of in vivo experiments using data from 10 patients assessing the ability of the proposed methodology in real scenarios. Results: In silico experiments show that the methodology is able to identify poor and well controlled days in theoretical scenarios. In vivo experiments present meaningful profiles for working days, bank days and other situations, where different insulin requirements were detected. Conclusions: A tool for profiling blood glucose dynamics of patients can be implemented in a short term to enhance existing analysis platforms using combined CGM-CSII systems. Besides coping with the information overload, the tool will assist physicians to adjust and improve insulin therapy and patients in the self-management of the disease. (C) 2016 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:131 / 141
页数:11
相关论文
共 23 条
[1]   The use and efficacy of continuous glucose monitoring in type 1 diabetes treated with insulin pump therapy: a randomised controlled trial [J].
Battelino, T. ;
Conget, I. ;
Olsen, B. ;
Schuetz-Fuhrmann, I. ;
Hommel, E. ;
Hoogma, R. ;
Schierloh, U. ;
Sulli, N. ;
Bolinder, J. .
DIABETOLOGIA, 2012, 55 (12) :3155-3162
[2]  
Bellazzi R, 1998, J AM MED INFORM ASSN, P160
[3]   Intelligent analysis of clinical time series: an application in the diabetes mellitus domain [J].
Bellazzi, R ;
Larizza, C ;
Magni, P ;
Montani, S ;
Stefanelli, M .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2000, 20 (01) :37-57
[4]   Threshold-Based Insulin-Pump Interruption for Reduction of Hypoglycemia [J].
Bergenstal, Richard M. ;
Klonoff, David C. ;
Garg, Satish K. ;
Bode, Bruce W. ;
Meredith, Melissa ;
Slover, Robert H. ;
Ahmann, Andrew J. ;
Welsh, John B. ;
Lee, Scott W. ;
Kaufman, Francine R. .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (03) :224-232
[5]   Recommendations for Standardizing Glucose Reporting and Analysis to Optimize Clinical Decision Making in Diabetes: The Ambulatory Glucose Profile (AGP) [J].
Bergenstal, Richard M. ;
Ahmann, Andrew J. ;
Bailey, Timothy ;
Beck, Roy W. ;
Bissen, Joan ;
Buckingham, Bruce ;
Deeb, Larry ;
Dolin, Robert H. ;
Garg, Satish K. ;
Goland, Robin ;
Hirsch, Irl B. ;
Klonoff, David C. ;
Kruger, Davida F. ;
Matfin, Glenn ;
Mazze, Roger S. ;
Olson, Beth A. ;
Parkin, Christopher ;
Peters, Anne ;
Powers, Margaret A. ;
Rodriguez, Henry ;
Southerland, Phil ;
Strock, Ellie S. ;
Tamborlane, William ;
Wesley, David M. .
DIABETES TECHNOLOGY & THERAPEUTICS, 2013, 15 (03) :198-211
[6]   Predictive Low-Glucose Insulin Suspension Reduces Duration of Nocturnal Hypoglycemia in Children Without Increasing Ketosis [J].
Buckingham, Bruce A. ;
Raghinaru, Dan ;
Cameron, Fraser ;
Bequette, B. Wayne ;
Chase, H. Peter ;
Maahs, David M. ;
Slover, Robert ;
Wadwa, R. Paul ;
Wilson, Darrell M. ;
Ly, Trang ;
Aye, Tandy ;
Hramiak, Irene ;
Clarson, Cheril ;
Stein, Robert ;
Gallego, Patricia H. ;
Lum, John ;
Sibayan, Judy ;
Kollman, Craig ;
Beck, Roy W. .
DIABETES CARE, 2015, 38 (07) :1197-1204
[7]   Blind optimisation problem instance classification via enhanced universal similarity metric [J].
Contreras, Ivan ;
Arnaldo, Ignacio ;
Krasnogor, Natalio ;
Ignacio Hidalgo, J. .
MEMETIC COMPUTING, 2014, 6 (04) :263-276
[8]   The complete linkage clustering algorithm revisited [J].
Dawyndt, P ;
De Meyer, H ;
De Baets, B .
SOFT COMPUTING, 2005, 9 (05) :385-392
[9]   Closed- Loop Artificial Pancreas Systems: Engineering the Algorithms [J].
Doyle, Francis J., III ;
Huyett, Lauren M. ;
Lee, Joon Bok ;
Zisser, Howard C. ;
Dassau, Eyal .
DIABETES CARE, 2014, 37 (05) :1191-1197
[10]   GRAPH DRAWING BY FORCE-DIRECTED PLACEMENT [J].
FRUCHTERMAN, TMJ ;
REINGOLD, EM .
SOFTWARE-PRACTICE & EXPERIENCE, 1991, 21 (11) :1129-1164