Constrained MPC for uncertain linear systems with ellipsoidal target sets

被引:19
作者
Brooms, AC
Kouvaritakis, B
Lee, YI
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PJ, England
[2] Univ London Birkbeck Coll, Dept Math & Stat, London WC1E 7HX, England
[3] Gyeongsang Natl Univ, Res Ctr Aircraft Parts Tech, Dept COntrol & Instr, Jinju Gyeongnam 660701, South Korea
基金
英国工程与自然科学研究理事会;
关键词
linear systems; feasibility; robust stability; invariant ellipsoids; linear matrix inequalities;
D O I
10.1016/S0167-6911(01)00135-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Robustly feasible invariant sets provide a way of identifying stabilizable regions for uncertain/time-varying linear systems with input constraints under fixed state feedback control laws. With the introduction of extra degrees of freedom in the form of perturbed control laws, these stabilizable regions can be enlarged. This was done in Lee and Kouvaritakis (Automatica 36 (2000) 1497-1504) in conjunction with polyhedral invariant sets and the aim here is to extend this work using ellipsoidal target sets. We also extend the analysis to take into account both polytopic and unstructured bounded disturbances, as well as unstructured uncertainties. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:157 / 166
页数:10
相关论文
共 7 条
[1]   Robust constrained model predictive control using linear matrix inequalities [J].
Kothare, MV ;
Balakrishnan, V ;
Morari, M .
AUTOMATICA, 1996, 32 (10) :1361-1379
[2]   Efficient robust predictive control [J].
Kouvaritakis, B ;
Rossiter, JA ;
Schuurmans, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2000, 45 (08) :1545-1549
[3]  
KOUVARITAKIS B, 1998, INT S NONL MOD PRED
[4]   Robust receding horizon predictive control for systems with uncertain dynamics and input saturation [J].
Lee, YI ;
Kouvaritakis, B .
AUTOMATICA, 2000, 36 (10) :1497-1504
[5]  
Nascimento V. H., 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251), P419, DOI 10.1109/ACC.1999.782862
[6]  
Sznaier M., 1987, Proceedings of the 26th IEEE Conference on Decision and Control (Cat. No.87CH2505-6), P761
[7]   Determinant maximization with linear matrix inequality constraints [J].
Vandenberghe, L ;
Boyd, S ;
Wu, SP .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 19 (02) :499-533