A piezoelectric spring pendulum oscillator used for multi-directional and ultra-low frequency vibration energy harvesting

被引:218
作者
Wu, Yipeng [1 ]
Qiu, Jinhao [1 ]
Zhou, Shengpeng [1 ]
Ji, Hongli [1 ]
Chen, Yang [1 ]
Li, Sen [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, State Key Lab Mech & Control Mech Struct, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Energy harvesting; Ultra-low frequency vibration; Spring pendulum; Piezoelectric; DESIGN; NANOGENERATORS; PERFORMANCE; STOPPERS;
D O I
10.1016/j.apenergy.2018.09.082
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Low frequency vibration is a ubiquitous energy existing in our environment, but a large efficient harvesting of which remains challenging. This paper presents a simple piezoelectric spring architecture based on a common binder clip structure. The harvester with pendulum spring allows the energy of the dynamic mass to be converted into electrical energy in the piezoelectric transducer. Due to the basic characteristics of spring pendulums, the proposed harvester can efficiently scavenge not only ultra-low frequency but also multi-directional vibrational energies. Modeling and design are conducted and a normalized expression of the harvester behavior is given. Chirp and human motion excitations are used to evaluate the proposed harvester's performances. Simulation and experimental results are in good agreement. The proposed device could generate a high output power (13.29 mW) at a low operating frequency (2.03 Hz), which shows great application prospects in the power supply of wearable products, ocean buoys, etc.
引用
收藏
页码:600 / 614
页数:15
相关论文
共 52 条
[1]   Chaotic responses of a harmonically excited spring pendulum moving in circular path [J].
Amer, T. S. ;
Bek, M. A. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (05) :3196-3202
[2]   Analysis of two dimensional, wide-band, bistable vibration energy harvester [J].
Ando, B. ;
Baglio, S. ;
Maiorca, F. ;
Trigona, C. .
SENSORS AND ACTUATORS A-PHYSICAL, 2013, 202 :176-182
[3]   Experimental and Theoretical Study of a Piezoelectric Vibration Energy Harvester Under High Temperature [J].
Arroyo, Emmanuelle ;
Jia, Yu ;
Du, Sijun ;
Chen, Shao-Tuan ;
Seshia, Ashwin A. .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2017, 26 (06) :1216-1225
[4]  
Badel A., 2016, Nonlinearity in Energy Harvesting Systems, P321
[5]   Piezoelectric energy harvesting using a synchronized switch technique [J].
Badel, Adrien ;
Guyomar, Daniel ;
Lefeuvre, Elie ;
Richard, Claude .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2006, 17 (8-9) :831-839
[6]  
Beeby S., 2010, ENERGY HARVESTING AU
[7]   Energy harvesting vibration sources for microsystems applications [J].
Beeby, S. P. ;
Tudor, M. J. ;
White, N. M. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (12) :R175-R195
[8]   Energy harvesting from walking motion of a humanoid robot using a piezoelectric composite [J].
Cha, Youngsu ;
Hong, Seokmin .
SMART MATERIALS AND STRUCTURES, 2016, 25 (10)
[9]   Internal Resonance Energy Harvesting [J].
Chen, Li-Qun ;
Jiang, Wen-An .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2015, 82 (03)
[10]   Energy harvesting performance of a dandelion-like multi-directional piezoelectric vibration energy harvester [J].
Chen, Renwen ;
Ren, Long ;
Xia, Huakang ;
Yuan, Xingwu ;
Liu, Xiangjian .
SENSORS AND ACTUATORS A-PHYSICAL, 2015, 230 :1-8