On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model

被引:20
作者
Medjo, Theodore Tachim [1 ]
机构
[1] Florida Int Univ, Dept Math, MMC, Miami, FL 33199 USA
关键词
Stochastic; Allen-Cahn; Navier-Stokes; variational solutions; strong solutions; PHASE-FIELD MODEL; 2-PHASE FLOW; EQUATIONS; DRIVEN; FLUIDS; SHEAR; SPDE;
D O I
10.1142/S0219493719500072
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study, in this paper, a stochastic version of a coupled Allen-Cahn-Navier-Stokes model in a two-dimensional (2D) bounded domain. The model consists of the Navier-Stokes equations (NSEs) for the velocity, coupled with a Allen-Cahn model for the order (phase) parameter. We prove the existence and the uniqueness of a variational solution.
引用
收藏
页数:28
相关论文
共 34 条
[1]   On a diffuse interface model for a two-phase flow of compressible viscous fluids [J].
Abels, Helmut ;
Feireisl, Eduard .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2008, 57 (02) :659-698
[2]   On a Diffuse Interface Model for Two-Phase Flows of Viscous, Incompressible Fluids with Matched Densities [J].
Abels, Helmut .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 194 (02) :463-506
[3]  
[Anonymous], 2001, American Mathematical Soc.
[4]   A generalization of the Navier-Stokes equations to two-phase flows [J].
Blesgen, T .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 1999, 32 (10) :1119-1123
[5]   A theoretical and numerical model for the study of incompressible mixture flows [J].
Boyer, F .
COMPUTERS & FLUIDS, 2002, 31 (01) :41-68
[6]   Nonhomogeneous Cahn-Hilliard fluids [J].
Boyer, F .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2001, 18 (02) :225-259
[7]  
Boyer F, 1999, ASYMPTOTIC ANAL, V20, P175
[8]  
Breckner H., 2000, J. Appl. Math. Stoch. Anal, V13, P239
[9]  
Breckner H.I., 1999, THESIS
[10]   Strong solutions for SPDE with locally monotone coefficients driven by Levy noise [J].
Brzezniak, Zdzislaw ;
Liu, Wei ;
Zhu, Jiahui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 :283-310