MicroRNA-130a, a Potential Antifibrotic Target in Cardiac Fibrosis

被引:47
作者
Li, Li [1 ,2 ]
Bounds, Kelsey R. [3 ]
Chatterjee, Piyali [3 ]
Gupta, Sudhiranjan [1 ]
机构
[1] Texas A&M Hlth Sci Ctr, Cent Texas Vet Hlth Care Syst, Dept Med Physiol, Temple, TX 76504 USA
[2] Peking Univ, Hlth Sci Ctr, Dept Physiol & Pathophysiol, Beijing, Peoples R China
[3] Baylor Scott White Hlth, Dept Internal Med, Div Nephrol & Hypertens, Temple, TX USA
来源
JOURNAL OF THE AMERICAN HEART ASSOCIATION | 2017年 / 6卷 / 11期
基金
中国国家自然科学基金;
关键词
angiotensin II; cardiac fibrosis; miR-130a; myofibroblast; peroxisome proliferator-activated receptor gamma; FACTOR-KAPPA-B; ANGIOTENSIN-II; MYOCARDIAL FIBROSIS; GROWTH-FACTOR; MOLECULAR-MECHANISMS; HEART-FAILURE; INHIBITION; FIBROBLASTS; INFLAMMATION; HYPERTROPHY;
D O I
10.1161/JAHA.117.006763
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background-Cardiac fibrosis occurs because of disruption of the extracellular matrix network leading to myocardial dysfunction. Angiotensin II has been implicated in the development of cardiac fibrosis. Recently, microRNAs have been identified as an attractive target for therapeutic intervention in cardiac pathologies; however, the underlying mechanism of microRNAs in cardiac fibrosis remains unclear. MicroRNA-130a (miR-130a) has been shown to participate in angiogenesis and cardiac arrhythmia; however, its role in cardiac fibrosis is unknown. Methods and Results-In this study, we found that miR-130a was significantly upregulated in angiotensin II-infused mice. The in vivo inhibition of miR-130a by locked nucleic acid-based anti-miR-130a in mice significantly reduced angiotensin II-induced cardiac fibrosis. Upregulation of miR-130a was confirmed in failing human hearts. Overexpressing miR-130a in cardiac fibroblasts promoted profibrotic gene expression and myofibroblasts differentiation, and the inhibition of miR-130a reversed the processes. Using the constitutive and dominant negative constructs of peroxisome proliferator-activated receptor gamma 3-'untranslated region (UTR), data revealed that the protective mechanism was associated with restoration of peroxisome proliferator-activated receptor gamma level leading to the inhibition of angiotensin II-induced cardiac fibrosis. Conclusions-Our findings provide evidence that miR-130a plays a critical role in cardiac fibrosis by directly targeting peroxisome proliferator-activated receptor gamma. We conclude that inhibition of miR-130a would be a promising strategy for the treatment of cardiac fibrosis.
引用
收藏
页数:15
相关论文
共 61 条
[1]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[2]   Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function [J].
Bernardo, Bianca C. ;
Gao, Xiao-Ming ;
Winbanks, Catherine E. ;
Boey, Esther J. H. ;
Tham, Yow Keat ;
Kiriazis, Helen ;
Gregorevic, Paul ;
Obad, Susanna ;
Kauppinen, Sakari ;
Du, Xiao-Jun ;
Lin, Ruby C. Y. ;
McMullen, Julie R. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (43) :17615-17620
[3]   The cardiac fibroblast: Therapeutic target in myocardial remodeling and failure [J].
Brown, RD ;
Ambler, SK ;
Mitchell, MD ;
Long, CS .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2005, 45 :657-687
[4]   MiR-133a regulates collagen 1A1: Potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension [J].
Castoldi, Giovanna ;
Di Gioia, Cira R. T. ;
Bombardi, Camila ;
Catalucci, Daniele ;
Corradi, Barbara ;
Gualazzi, Maria Giovanna ;
Leopizzi, Martina ;
Mancini, Massimiliano ;
Zerbini, Gianpaolo ;
Condorelli, Gianluigi ;
Stella, Andrea .
JOURNAL OF CELLULAR PHYSIOLOGY, 2012, 227 (02) :850-856
[5]   Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5 [J].
Chen, Yun ;
Gorski, David H. .
BLOOD, 2008, 111 (03) :1217-1226
[6]   Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart [J].
Creemers, Esther E. ;
Pinto, Yigal M. .
CARDIOVASCULAR RESEARCH, 2011, 89 (02) :265-272
[7]   Myofibroblasts in the Infarct Area: Concepts and Challenges [J].
Daskalopoulos, Evangelos P. ;
Janssen, Ben J. A. ;
Blankesteijn, W. Matthijs .
MICROSCOPY AND MICROANALYSIS, 2012, 18 (01) :35-49
[8]   MicroRNA-328, a Potential Anti-Fibrotic Target in Cardiac Interstitial Fibrosis [J].
Du, Weijie ;
Liang, Haihai ;
Gao, Xu ;
Li, Xiaoxue ;
Zhang, Yue ;
Pan, Zhenwei ;
Li, Cui ;
Wang, Yuying ;
Liu, Yanxin ;
Yuan, Wei ;
Ma, Ning ;
Chu, Wenfeng ;
Shan, Hongli ;
Lu, Yanjie .
CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2016, 39 (03) :827-836
[9]   miR-133 and miR-30 Regulate Connective Tissue Growth Factor Implications for a Role of MicroRNAs in Myocardial Matrix Remodeling [J].
Duisters, Rudy F. ;
Tijsen, Anke J. ;
Schroen, Blanche ;
Leenders, Joost J. ;
Lentink, Viola ;
van der Made, Ingeborg ;
Herias, Veronica ;
van Leeuwen, Rick E. ;
Schellings, Mark W. ;
Barenbrug, Paul ;
Maessen, Jos G. ;
Heymans, Stephane ;
Pinto, Yigal M. ;
Creemers, Esther E. .
CIRCULATION RESEARCH, 2009, 104 (02) :170-U61
[10]   Targeting Fibrosis for the Treatment of Heart Failure: A Role for Transforming Growth Factor-β [J].
Edgley, Amanda J. ;
Krum, Henry ;
Kelly, Darren J. .
CARDIOVASCULAR THERAPEUTICS, 2012, 30 (01) :e30-e40