Multiple solutions of boundary-value problems for impulsive differential equations

被引:15
作者
Wang, Weibing [1 ]
Yang, Xuxin [2 ]
机构
[1] Hunan Univ Sci & Technol, Dept Math, Xiangtan 411201, Hunan, Peoples R China
[2] Hunan First Normal Univ, Dept Math, Changsha 410205, Hunan, Peoples R China
关键词
impulsive differential equations; boundary-value problems; multiple solutions; critical point; weakly solution; POSITIVE SOLUTIONS; ELLIPTIC-EQUATIONS;
D O I
10.1002/mma.1472
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the existence of multiple solutions to a second-order Dirichlet boundary-value problem with impulsive effects. The proof is based on critical point theorems. Copyright (C) 2011 John Wiley & Sons, Ltd.
引用
收藏
页码:1649 / 1657
页数:9
相关论文
共 21 条
[1]  
Agarwal R, 2002, APPL MATH COMPUT, V114, P51
[2]  
Ambrosetti A, 2003, DISCRETE CONT DYN-A, V9, P55
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]  
Averna D., 2003, Topol. Meth. Nonl. Anal., V22, P93
[5]  
Bainov D., 1993, IMPULSIVE DIFFERENTI, DOI [10.1201/9780203751206, DOI 10.1201/9780203751206]
[6]   Multiplicity theorems for the Dirichlet problem involving the p-Laplacian [J].
Bonanno, G ;
Livrea, R .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 54 (01) :1-7
[7]   Periodic boundary value problems for the first order impulsive functional differential equations [J].
Ding, W ;
Mi, JR ;
Han, M .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 165 (02) :433-446
[8]  
Feckan M, 1996, B UMI, V7, P175
[9]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389
[10]  
Ladde G.S., 1985, MONOTONE ITERATIVE T