Amination of 1-hexanol on bimetallic AuPd/TiO2 catalysts

被引:27
作者
Ball, Madelyn R. [1 ]
Wesley, Thejas S. [1 ]
Rivera-Dones, Keishla R. [1 ]
Huber, George W. [1 ]
Dumesic, James A. [1 ]
机构
[1] Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
WATER-GAS SHIFT; NEAR-ATMOSPHERIC PRESSURES; METAL-SUPPORT INTERACTIONS; AU-PD CATALYSTS; CO ADSORPTION; SELECTIVE HYDROGENATION; ABSORPTION SPECTROSCOPY; SURFACE SEGREGATION; BORROWING HYDROGEN; CARBON-MONOXIDE;
D O I
10.1039/c8gc02321b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
AuPd/TiO2 catalysts, synthesized using controlled surface reactions, are active for the gas-phase amination of 1-hexanol using ammonia. The bimetallic active sites for these catalysts have been characterized using CO chemisorption and XAS techniques, and the absence of monometallic Pd species in the AuPd catalysts was confirmed using UV-vis and STEM-EDS analysis. The bimetallic catalysts exhibit synergy between Au and Pd, as the rate of hexanol conversion increases from 8.7 mol ks(-1) (mol total Pd)(-1) over Pd/TiO2 to up to 42 mol ks(-1) (mol total Pd)(-1) over AuPd/TiO2 with a Pd/Au atomic ratio of 0.06. The rate of hexanol conversion is also enhanced with respect to Au content, with a 5-fold increase in the total Au-normalized rate from Au/TiO2 to AuPd0.67/TiO2. As Pd is added to Au/TiO2 in increasing quantities, the production rate of primary species (i.e., hexylamine and hexanenitrile) is preferentially increased. The rate of dihexylamine production increases to a lesser extent, while trihexylamine formation remains relatively constant across Pd loadings. Moreover, trihexylamine, which cannot be formed via the condensation of dihexylamine and hexanol, is shown to be produced via the secondary aldimine, N-hexylidene hexylamine. The AuPd bimetallic catalysts also exhibit reduced hydrogenolysis activity compared to monometallic Pd/TiO2.
引用
收藏
页码:4695 / 4709
页数:15
相关论文
共 106 条
[1]   Direct Synthesis of Hydrogen Peroxide Over Au-Pd Catalysts Prepared by Electroless Deposition [J].
Alba-Rubio, Ana C. ;
Plauck, Anthony ;
Stangland, Eric E. ;
Mavrikakis, Manos ;
Dumesic, James A. .
CATALYSIS LETTERS, 2015, 145 (12) :2057-2065
[2]   Bimetallic catalysts for upgrading of biomass to fuels and chemicals [J].
Alonso, David Martin ;
Wettstein, Stephanie G. ;
Dumesic, James A. .
CHEMICAL SOCIETY REVIEWS, 2012, 41 (24) :8075-8098
[3]  
Aragao I.B., 2018, APPL CATAL B-ENVIRON, V222, P1
[4]  
Asprion N., 2014, U.S. Pat, Patent No. [8766009 B2, 8766009]
[5]   SURFACE-STRUCTURE AND REACTIVITY IN THE CYCLIZATION OF ACETYLENE TO BENZENE WITH PD OVERLAYERS AND PD/AU SURFACE ALLOYS ON AU(111) [J].
BADDELEY, CJ ;
ORMEROD, RM ;
STEPHENSON, AW ;
LAMBERT, RM .
JOURNAL OF PHYSICAL CHEMISTRY, 1995, 99 (14) :5146-5151
[6]   The Catalytic Amination of Alcohols [J].
Baehn, Sebastian ;
Imm, Sebastian ;
Neubert, Lorenz ;
Zhang, Min ;
Neumann, Helfried ;
Beller, Matthias .
CHEMCATCHEM, 2011, 3 (12) :1853-1864
[7]  
Bergeret G., 1997, HDB HETEROGENEOUS CA, V438, P439
[8]   Design of a surface alloy catalyst for steam reforming [J].
Besenbacher, F ;
Chorkendorff, I ;
Clausen, BS ;
Hammer, B ;
Molenbroek, AM ;
Norskov, JK ;
Stensgaard, I .
SCIENCE, 1998, 279 (5358) :1913-1915
[9]   MOLECULAR ORBITAL VIEW OF CHEMISORBED CARBON MONOXIDE [J].
BLYHOLDER, G .
JOURNAL OF PHYSICAL CHEMISTRY, 1964, 68 (10) :2772-&
[10]   Effect of Zn addition on the water-gas shift reaction over supported palladium catalysts [J].
Bollmann, Luis ;
Ratts, Joshua L. ;
Joshi, Ajay M. ;
Williams, W. Damion ;
Pazmino, Jorge ;
Joshi, Yogesh V. ;
Miller, Jeffrey T. ;
Kropf, A. Jeremy ;
Delgass, W. Nicholas ;
Ribeiro, Fabio H. .
JOURNAL OF CATALYSIS, 2008, 257 (01) :43-54