A new topology on the universal path space

被引:5
作者
Virk, Ziga [1 ]
Zastrow, Andreas [2 ]
机构
[1] IST Austria, Campus 1, A-3400 Klosterneuburg, Austria
[2] Univ Gdansk, Fac Math Phys & Informat, Inst Math, Ul Wita Stwosza 57, PL-80308 Gdansk, Poland
关键词
Topology on the fundamental group; Topology on the path space; Quasi topological fundamental group; Compact open topology; COVERING-SPACES;
D O I
10.1016/j.topol.2017.09.015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize Brazes' topology on the fundamental group to the whole universal path space (X) over tilde, i.e., to the set of homotopy classes of all based paths. We develop basic properties of the new notion and provide a complete comparison of the obtained topology with the established topologies, in particular with the Lasso topology and the CO topology, i.e., the topology that is induced by the compact-open topology. It turns out that the new topology is the finest topology contained in the CO topology, for which the action of the fundamental group on the universal path space is a continuous group action. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:186 / 196
页数:11
相关论文
共 15 条
[1]  
Bogley W.A., UNIVERSAL PATH SPACE
[2]   The fundamental group as a topological group [J].
Brazas, Jeremy .
TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (01) :170-188
[3]  
Brodsky N., 2012, FUNDAM MATH, V218
[4]   FUNDAMENTAL GROUPOID AS A TOPOLOGICAL GROUPOID [J].
BROWN, R ;
DANESHNARUIE, G .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1975, 19 (MAR) :237-244
[5]  
Dydak J., ARXIV11083253
[6]  
Fabel P., 2009, Bulletin of the Polish Academy of Sciences Mathematics, V59, DOI [DOI 10.4064/ba59-1-9, 10.4064/ba59-1-9, DOI 10.4064/BA59-1-9]
[7]   Generalized universal covering spaces and the shape group [J].
Fischer, Hanspeter ;
Zastrow, Andreas .
FUNDAMENTA MATHEMATICAE, 2007, 197 :167-196
[8]   A core-free semicovering of the Hawaiian Earring [J].
Fischer, Hanspeter ;
Zastrow, Andreas .
TOPOLOGY AND ITS APPLICATIONS, 2013, 160 (14) :1957-1967
[9]  
Massey W.S., 1991, A Basic Course in Algebraic Topology, Vfirst
[10]  
Mucuk O., 2001, INT J MATH SCI, V27, P131