Size-dependent visible absorption and fast photoluminescence decay dynamics from freestanding strained silicon nanocrystals

被引:39
作者
Dhara, Soumen [1 ]
Giri, P. K. [1 ,2 ]
机构
[1] Indian Inst Technol Guwahati, Dept Phys, Gauhati 781039, India
[2] Indian Inst Technol Guwahati, Ctr Nanotechnol, Gauhati 781039, India
来源
NANOSCALE RESEARCH LETTERS | 2011年 / 6卷
关键词
OPTICAL-PROPERTIES; CRYSTALLINE;
D O I
10.1186/1556-276X-6-320
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this article, we report on the visible absorption, photoluminescence (PL), and fast PL decay dynamics from freestanding Si nanocrystals (NCs) that are anisotropically strained. Direct evidence of strain-induced dislocations is shown from high-resolution transmission electron microscopy images. Si NCs with sizes in the range of approximately 5-40 nm show size-dependent visible absorption in the range of 575-722 nm, while NCs of average size < 10 nm exhibit strong PL emission at 580-585 nm. The PL decay shows an exponential decay in the nanosecond time scale. The Raman scattering studies show non-monotonic shift of the TO phonon modes as a function of size because of competing effect of strain and phonon confinement. Our studies rule out the influence of defects in the PL emission, and we propose that owing to the combined effect of strain and quantum confinement, the strained Si NCs exhibit direct band gap-like behavior.
引用
收藏
页数:7
相关论文
共 31 条
[1]   Evidence of quantum confinement effects on interband optical transitions in Si nanocrystals [J].
Alonso, M. I. ;
Marcus, I. C. ;
Garriga, M. ;
Goni, A. R. ;
Jedrzejewski, J. ;
Balberg, I. .
PHYSICAL REVIEW B, 2010, 82 (04)
[2]   COMPARISON OF ROOM-TEMPERATURE PHOTOLUMINESCENCE DECAYS IN ANODICALLY OXIDIZED CRYSTALLINE AND X-RAY-AMORPHOUS POROUS SILICON [J].
BUSTARRET, E ;
MIHALCESCU, I ;
LIGEON, M ;
ROMESTAIN, R ;
VIAL, JC ;
MADEORE, F .
JOURNAL OF LUMINESCENCE, 1993, 57 (1-6) :105-109
[3]   VISIBLE-LIGHT EMISSION DUE TO QUANTUM SIZE EFFECTS IN HIGHLY POROUS CRYSTALLINE SILICON [J].
CULLIS, AG ;
CANHAM, LT .
NATURE, 1991, 353 (6342) :335-338
[4]  
de Boer WDAM, 2010, NAT NANOTECHNOL, V5, P878, DOI [10.1038/nnano.2010.236, 10.1038/NNANO.2010.236]
[5]   Mechanism of bright red emission in Si nanoclusters [J].
Dhara, S. ;
Lu, C-Y ;
Nair, K. G. M. ;
Chen, K-H ;
Chen, C-P ;
Huang, Y-F ;
David, C. ;
Chen, L-C ;
Raj, Baldev .
NANOTECHNOLOGY, 2008, 19 (39)
[6]  
DHARA S, 2011, J NANOSCI NANOTECHNO
[7]   Optical properties of passivated Si nanocrystals and SiOx nanostructures [J].
Dinh, LN ;
Chase, LL ;
Balooch, M ;
Siekhaus, WJ ;
Wooten, F .
PHYSICAL REVIEW B, 1996, 54 (07) :5029-5037
[8]   Surface chemistry of luminescent colloidal silicon nanoparticles [J].
Fojtik, A ;
Henglein, A .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (05) :1994-1998
[9]   Strain analysis on freestanding germanium nanocrystals [J].
Giri, P. K. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (24)
[10]   Classification and control of the origin of photoluminescence from Si nanocrystals [J].
Godefroo, S. ;
Hayne, M. ;
Jivanescu, M. ;
Stesmans, A. ;
Zacharias, M. ;
Lebedev, O. I. ;
Van Tendeloo, G. ;
Moshchalkov, V. V. .
NATURE NANOTECHNOLOGY, 2008, 3 (03) :174-178