High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering

被引:27
作者
Aparicio, Tomas [1 ]
Nyerges, Akos [2 ,3 ]
Martinez-Garcia, Esteban [1 ]
de Lorenzo, Victor [1 ]
机构
[1] CSIC, CNB, Syst & Synthet Biol Program, Campus Cantoblanco, Madrid 28049, Spain
[2] Biol Res Ctr, Inst Biochem, Synthet & Syst Biol Unit, H-6726 Szeged, Hungary
[3] Harvard Med Sch, Boston, MA 02115 USA
基金
欧盟地平线“2020”;
关键词
PROTEIN; SYSTEM; DNA; RECOMBINATION; CHROMOSOMES; INITIATION; BACTERIA; CLONING; DESIGN; GENES;
D O I
10.1016/j.isci.2020.100946
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Application of single-stranded DNA recombineering for genome editing of species other than enterobacteria is limited by the efficiency of the recombinase and the action of endogenous mismatch repair (MMR) systems. In this work we have set up a genetic system for entering multiple changes in the chromosome of the biotechnologically relevant strain EM42 of Pseudomononas putida. To this end high-level heat-inducible co-transcription of the rec2 recombinase and P. putida's allele mutL(E36K)(PP) was designed under the control of the P-L/cl857 system. Cycles of short thermal shifts followed by transformation with a suite of mutagenic oligos delivered different types of genomic changes at frequencies up to 10% per single modification. The same approach was instrumental to super-diversify short chromosomal portions for creating libraries of functional genomic segments-e.g., ribosomal-binding sites. These results enabled multiplexing of genome engineering of P. putida, as required for metabolic reprogramming of this important synthetic biology chassis.
引用
收藏
页数:29
相关论文
共 58 条
[21]   Precise Manipulation of Chromosomes in Vivo Enables Genome-Wide Codon Replacement [J].
Isaacs, Farren J. ;
Carr, Peter A. ;
Wang, Harris H. ;
Lajoie, Marc J. ;
Sterling, Bram ;
Kraal, Laurens ;
Tolonen, Andrew C. ;
Gianoulis, Tara A. ;
Goodman, Daniel B. ;
Reppas, Nikos B. ;
Emig, Christopher J. ;
Bang, Duhee ;
Hwang, Samuel J. ;
Jewett, Michael C. ;
Jacobson, Joseph M. ;
Church, George M. .
SCIENCE, 2011, 333 (6040) :348-353
[22]   RNA-guided editing of bacterial genomes using CRISPR-Cas systems [J].
Jiang, Wenyan ;
Bikard, David ;
Cox, David ;
Zhang, Feng ;
Marraffini, Luciano A. .
NATURE BIOTECHNOLOGY, 2013, 31 (03) :233-239
[23]   A second chromosomal copy of the catA gene endows Pseudomonas putidamt-2 with an enzymatic safety valve for excess of catechol [J].
Jimenez, Jose I. ;
Perez-Pantoja, Danilo ;
Chavarria, Max ;
Diaz, Eduardo ;
Lorenzo, Victor .
ENVIRONMENTAL MICROBIOLOGY, 2014, 16 (06) :1767-1778
[24]   A GENERAL SYSTEM TO INTEGRATE LACZ FUSIONS INTO THE CHROMOSOMES OF GRAM-NEGATIVE EUBACTERIA - REGULATION OF THE PM PROMOTER OF THE TOL PLASMID STUDIED WITH ALL CONTROLLING ELEMENTS IN MONOCOPY [J].
KESSLER, B ;
DELORENZO, V ;
TIMMIS, KN .
MOLECULAR AND GENERAL GENETICS, 1992, 233 (1-2) :293-301
[25]  
KOZAK M, 1983, MICROBIOL REV, V47, P1
[26]   Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins [J].
Lambertsen, L ;
Sternberg, C ;
Molin, S .
ENVIRONMENTAL MICROBIOLOGY, 2004, 6 (07) :726-732
[27]   Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa [J].
Lesic, Biliana ;
Rahme, Laurence G. .
BMC MOLECULAR BIOLOGY, 2008, 9
[28]   Scarless and sequential gene modification in Pseudomonas using PCR product flanked by short homology regions [J].
Liang, Rubing ;
Liu, Jianhua .
BMC MICROBIOLOGY, 2010, 10
[29]   Detection of novel recombinases in bacteriophage genomes unveils Rad52, Rad51 and Gp2.5 remote homologs [J].
Lopes, Anne ;
Amarir-Bouhram, Jihane ;
Faure, Guilhem ;
Petit, Marie-Agnes ;
Guerois, Raphael .
NUCLEIC ACIDS RESEARCH, 2010, 38 (12) :3952-3962
[30]   Pseudomonas putida KT2440 markerless gene deletion using a combination of λ Red recombineering and Cre/loxP site-specific recombination [J].
Luo, Xi ;
Yang, Yunwen ;
Ling, Wen ;
Zhuang, Hao ;
Li, Qin ;
Shang, Guangdong .
FEMS MICROBIOLOGY LETTERS, 2016, 363 (04)