Quantum-classical dynamical brackets

被引:3
作者
Amin, M. [1 ]
Walton, M. A. [1 ]
机构
[1] Univ Lethbridge, Dept Phys & Astron, Lethbridge, AB T1K 3M4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
DEFORMATION-THEORY; WIGNER FUNCTION; MIXING QUANTUM; QUANTIZATION;
D O I
10.1103/PhysRevA.104.032216
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the problem of constructing a general hybrid quantum-classical bracket from a partial classical limit of a full quantum bracket. Introducing a hybrid composition product, we show that such a bracket is the commutator of that product. From this we see that the hybrid bracket will obey the Jacobi identity and the Leibniz rule provided the composition product is associative. This suggests that the set of hybrid variables belonging to an associative subalgebra with the composition product will have consistent quantum-classical dynamics. This restricts the class of allowed quantum-classical interaction Hamiltonians. Furthermore, we show that pure quantum or classical variables can interact in a consistent framework, unaffected by no-go theorems in the literature or the restrictions for hybrid variables. In the proposed scheme, quantum backreaction appears as quantum-dependent terms in the classical equations of motion.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] THE STATISTICAL DYNAMICS OF A SYSTEM CONSISTING OF A CLASSICAL AND A QUANTUM SUBSYSTEM
    ALEKSANDROV, IV
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 1981, 36 (08): : 902 - 908
  • [2] Amin M., ARXIV210701341
  • [3] QUANTUM BACKREACTION ON CLASSICAL VARIABLES
    ANDERSON, A
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (05) : 621 - 625
  • [4] [Anonymous], 2014, QUANTUM MECH MODERN
  • [5] WIGNER FUNCTION AND OTHER DISTRIBUTION-FUNCTIONS IN MOCK PHASE SPACES
    BALAZS, NL
    JENNINGS, BK
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1984, 104 (06): : 347 - 391
  • [6] Hybrid classical-quantum formulations ask for hybrid notions
    Barcelo, Carlos
    Carballo-Rubio, Raul
    Garay, Luis J.
    Gomez-Escalante, Ricardo
    [J]. PHYSICAL REVIEW A, 2012, 86 (04):
  • [7] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [8] DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 111 - 151
  • [9] Phase space quantum mechanics
    Blaszak, Maciej
    Domanski, Ziemowit
    [J]. ANNALS OF PHYSICS, 2012, 327 (02) : 167 - 211
  • [10] SEMICLASSICAL PHYSICS AND QUANTUM FLUCTUATIONS
    BOUCHER, W
    TRASCHEN, J
    [J]. PHYSICAL REVIEW D, 1988, 37 (12): : 3522 - 3532