The Role of Mathematical Models in Immuno-Oncology: Challenges and Future Perspectives

被引:13
作者
Sancho-Araiz, Aymara [1 ,2 ]
Mangas-Sanjuan, Victor [3 ,4 ]
Troconiz, Inaki F. [1 ,2 ]
机构
[1] Univ Navarra, Sch Pharm & Nutr, Dept Pharmaceut Technol & Chem, Pamplona 31009, Spain
[2] Navarra Inst Hlth Res IdiSNA, Pamplona 31009, Spain
[3] Univ Valencia, Dept Pharm & Pharmaceut Technol & Parasitol, Valencia 46100, Spain
[4] Interuniv Res Inst Mol Recognit & Technol Dev, Valencia 46100, Spain
关键词
immuno-oncology; PK; PD; mathematical modeling; bottom-up approach; middle-out approach; top-down approach; TUMOR-INFILTRATING LYMPHOCYTES; T-CELL EXHAUSTION; METASTATIC MELANOMA; PD-1; PATHWAYS; CANCER; IMMUNOTHERAPY; CHECKPOINT; CD8(+); PEMBROLIZUMAB; POPULATION;
D O I
10.3390/pharmaceutics13071016
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Immuno-oncology (IO) focuses on the ability of the immune system to detect and eliminate cancer cells. Since the approval of the first immune checkpoint inhibitor, immunotherapies have become a major player in oncology treatment and, in 2021, represented the highest number of approved drugs in the field. In spite of this, there is still a fraction of patients that do not respond to these therapies and develop resistance mechanisms. In this sense, mathematical models offer an opportunity to identify predictive biomarkers, optimal dosing schedules and rational combinations to maximize clinical response. This work aims to outline the main therapeutic targets in IO and to provide a description of the different mathematical approaches (top-down, middle-out, and bottom-up) integrating the cancer immunity cycle with immunotherapeutic agents in clinical scenarios. Among the different strategies, middle-out models, which combine both theoretical and evidence-based description of tumor growth and immunological cell-type dynamics, represent an optimal framework to evaluate new IO strategies.
引用
收藏
页数:18
相关论文
共 111 条
[1]  
AACR Publications, OV MAGE GEN FAM ID A OV MAGE GEN FAM ID A
[2]   Signatures of mutational processes in human cancer [J].
Alexandrov, Ludmil B. ;
Nik-Zainal, Serena ;
Wedge, David C. ;
Aparicio, Samuel A. J. R. ;
Behjati, Sam ;
Biankin, Andrew V. ;
Bignell, Graham R. ;
Bolli, Niccolo ;
Borg, Ake ;
Borresen-Dale, Anne-Lise ;
Boyault, Sandrine ;
Burkhardt, Birgit ;
Butler, Adam P. ;
Caldas, Carlos ;
Davies, Helen R. ;
Desmedt, Christine ;
Eils, Roland ;
Eyfjord, Jorunn Erla ;
Foekens, John A. ;
Greaves, Mel ;
Hosoda, Fumie ;
Hutter, Barbara ;
Ilicic, Tomislav ;
Imbeaud, Sandrine ;
Imielinsk, Marcin ;
Jaeger, Natalie ;
Jones, David T. W. ;
Jones, David ;
Knappskog, Stian ;
Kool, Marcel ;
Lakhani, Sunil R. ;
Lopez-Otin, Carlos ;
Martin, Sancha ;
Munshi, Nikhil C. ;
Nakamura, Hiromi ;
Northcott, Paul A. ;
Pajic, Marina ;
Papaemmanuil, Elli ;
Paradiso, Angelo ;
Pearson, John V. ;
Puente, Xose S. ;
Raine, Keiran ;
Ramakrishna, Manasa ;
Richardson, Andrea L. ;
Richter, Julia ;
Rosenstiel, Philip ;
Schlesner, Matthias ;
Schumacher, Ton N. ;
Span, Paul N. ;
Teague, Jon W. .
NATURE, 2013, 500 (7463) :415-+
[3]   Cancer modeling: From mechanistic to data-driven approaches, and from fundamental insights to clinical applications [J].
Bekisz, Sophie ;
Geris, Liesbet .
JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 46
[4]   Population pharmacokinetic-pharmacodynamic modelling in oncology: a tool for predicting clinical response [J].
Bender, Brendan C. ;
Schindler, Emilie ;
Friberg, Lena E. .
BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2015, 79 (01) :56-71
[5]   Use of translational modeling and simulation for quantitative comparison of PF-06804103, a new generation HER2 ADC, with Trastuzumab-DM1 [J].
Betts, Alison ;
Clark, Tracey ;
Jasper, Paul ;
Tolsma, John ;
van der Graaf, Piet H. ;
Graziani, Edmund, I ;
Rosfjord, Edward ;
Sung, Matthew ;
Ma, Dangshe ;
Barletta, Frank .
JOURNAL OF PHARMACOKINETICS AND PHARMACODYNAMICS, 2020, 47 (05) :513-526
[6]   Coregulation of CD8+ T cell exhaustion by multiple inhibitory receptors during chronic viral infection [J].
Blackburn, Shawn D. ;
Shin, Haina ;
Haining, W. Nicholas ;
Zou, Tao ;
Workman, Creg J. ;
Polley, Antonio ;
Betts, Michael R. ;
Freeman, Gordon J. ;
Vignali, Dario A. A. ;
Wherry, E. John .
NATURE IMMUNOLOGY, 2009, 10 (01) :29-37
[7]   Toxicity and management in CAR T-cell therapy [J].
Bonifant, Challice L. ;
Jackson, Hollie J. ;
Brentjens, Renier J. ;
Curran, Kevin J. .
MOLECULAR THERAPY-ONCOLYTICS, 2016, 3 :16011
[8]   Applications of Quantitative Systems Pharmacology in Model-Informed Drug Discovery: Perspective on Impact and Opportunities [J].
Bradshaw, Erica L. ;
Spilker, Mary E. ;
Zang, Richard ;
Bansal, Loveleena ;
He, Handan ;
Jones, Rhys D. O. ;
Le, Kha ;
Penney, Mark ;
Schuck, Edgar ;
Topp, Brian ;
Tsai, Alice ;
Xu, Christine ;
Nijsen, Marjoleen J. M. A. ;
Chan, Jason R. .
CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2019, 8 (11) :777-791
[9]   First-line chemoimmunotherapy in metastatic breast carcinoma: combination of paclitaxel and IMP321 (LAG-3Ig) enhances immune responses and antitumor activity [J].
Brignone, Chrystelle ;
Gutierrez, Maya ;
Mefti, Fawzia ;
Brain, Etienne ;
Jarcau, Rosana ;
Cvitkovic, Frederique ;
Bousetta, Nabil ;
Medioni, Jacques ;
Gligorov, Joseph ;
Grygar, Caroline ;
Marcu, Manon ;
Triebel, Frederic .
JOURNAL OF TRANSLATIONAL MEDICINE, 2010, 8
[10]   CTLA-4 and PD-1 Pathways Similarities, Differences, and Implications of Their Inhibition [J].
Buchbinder, Elizabeth I. ;
Desai, Anupam .
AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2016, 39 (01) :98-106