Pressure-induced anomalous enhancement of insulating state and isosymmetric structural transition in quasi-one-dimensional TiS3

被引:16
作者
An, Chao [1 ,2 ]
Lu, Pengchao [3 ]
Chen, Xuliang [1 ]
Zhou, Yonghui [1 ]
Wu, Juefei [3 ]
Zhou, Ying [1 ,2 ]
Park, Changyong [4 ]
Gu, Chuanchuan [1 ]
Zhang, Bowen [1 ,2 ]
Yuan, Yifang [1 ,5 ]
Sun, Jian [3 ,6 ]
Yang, Zhaorong [1 ,6 ]
机构
[1] Chinese Acad Sci, Anhui Prov Key Lab Condensed Matter Phys Extreme, High Magnet Field Lab, Hefei 230031, Anhui, Peoples R China
[2] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[3] Nanjing Univ, Sch Phys, Natl Lab Solid State Microstruct, Nanjing 210093, Jiangsu, Peoples R China
[4] Carnegie Inst Sci, Geophys Lab, HPCAT, Argonne, IL 60439 USA
[5] Zhengzhou Univ, Dept Phys & Engn, Zhengzhou 450052, Henan, Peoples R China
[6] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
关键词
SEMICONDUCTOR; PREDICTION; GAP;
D O I
10.1103/PhysRevB.96.134110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present in situ high-pressure synchrotron x-ray diffraction (XRD) and electrical transport measurements on quasi-one-dimensional single-crystal TiS3 up to 29.9-39.0 GPa in diamond-anvil cells, coupled with first-principles calculations. Counterintuitively, the conductive behavior of semiconductor TiS3 becomes increasingly insulating with pressure until P-C1 similar to 12 GPa, where extremes in all three axial ratios are observed. Upon further compression to P-C2 similar to 22 GPa, the XRD data evidence a structural phase transition. Based on our theoretical calculations, this structural transition is determined to be isosymmetric, i.e., without change of the structural symmetry (P2(1)/m), mainly resulting from rearrangement of the dangling S-2 pair along the a axis.
引用
收藏
页数:6
相关论文
共 36 条
  • [1] Strain-induced band gap engineering in layered TiS3
    Biele, Robert
    Flores, Eduardo
    Ramon Ares, Jose
    Sanchez, Carlos
    Ferrer, Isabel J.
    Rubio-Bollinger, Gabino
    Castellanos-Gomez, Andres
    D'Agosta, Roberto
    [J]. NANO RESEARCH, 2018, 11 (01) : 225 - 232
  • [2] FINITE ELASTIC STRAIN OF CUBIC CRYSTALS
    BIRCH, F
    [J]. PHYSICAL REVIEW, 1947, 71 (11): : 809 - 824
  • [3] PROPERTIES OF COMPOUNDS WITH ZRSE3 TYPE STRUCTURE
    BRATTAS, L
    KJEKSHUS, A
    [J]. ACTA CHEMICA SCANDINAVICA, 1972, 26 (09): : 3441 - 3449
  • [4] Titanium Trisulfide Monolayer: Theoretical Prediction of a New Direct-Gap Semiconductor with High and Anisotropic Carrier Mobility
    Dai, Jun
    Zeng, Xiao Cheng
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (26) : 7572 - 7576
  • [5] On the photoelectrochemical properties of TiS3 films
    Ferrer, I. J.
    Macia, M. D.
    Carcelen, V.
    Ares, J. R.
    Sanchez, C.
    [J]. EMRS SYMPOSIUM T: MATERIALS FOR SOLAR HYDROGEN VIA PHOTO-ELECTROCHEMICAL PRODUCTION, 2012, 22 : 48 - 52
  • [6] Lattice dynamics of Sb2Te3 at high pressures
    Gomis, O.
    Vilaplana, R.
    Manjon, F. J.
    Rodriguez-Hernandez, P.
    Perez-Gonzalez, E.
    Munoz, A.
    Kucek, V.
    Drasar, C.
    [J]. PHYSICAL REVIEW B, 2011, 84 (17)
  • [7] Conductance anisotropy and the power-law current-voltage characteristics along and across the layers of the TiS3 quasi-one-dimensional layered semiconductor
    Gorlova, I. G.
    Zybtsev, S. G.
    Pokrovskii, V. Ya
    [J]. JETP LETTERS, 2014, 100 (04) : 256 - 261
  • [8] Semiempirical GGA-type density functional constructed with a long-range dispersion correction
    Grimme, Stefan
    [J]. JOURNAL OF COMPUTATIONAL CHEMISTRY, 2006, 27 (15) : 1787 - 1799
  • [9] ZrSe3-Type Variant of TiS3: Structure and Thermoelectric Properties
    Guilmeau, Emmanuel
    Berthebaud, David
    Misse, Patrick R. N.
    Hebert, Sylvie
    Lebedev, Oleg I.
    Chateigner, Daniel
    Martin, Christine
    Maignan, Antoine
    [J]. CHEMISTRY OF MATERIALS, 2014, 26 (19) : 5585 - 5591
  • [10] ON PROPERTIES OF TIS3, ZRS3, AND HFS3
    HARALDSEN, H
    ROST, E
    KJEKSHUS, A
    STEFFENS.A
    [J]. ACTA CHEMICA SCANDINAVICA, 1963, 17 (05): : 1283 - &