On modular signs

被引:54
作者
Kowalski, E. [1 ]
Lau, Y-K. [2 ]
Soundararajan, K. [3 ]
Wu, J. [4 ]
机构
[1] ETH Zurich D MATH, CH-8092 Zurich, Switzerland
[2] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[3] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[4] Nancy Univ, Inst Elie Cartan, INRIA, F-54506 Vandoeuvre Les Nancy, France
基金
美国国家科学基金会;
关键词
D O I
10.1017/S030500411000040X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider some questions related to the signs of Hecke eigenvalues or Fourier coefficients of classical modular forms. One problem is to determine to what extent those signs, for suitable sets of primes, determine uniquely the modular form, and we give both individual and statistical results. The second problem, which has been considered by a number of authors, is to determine the size, in terms of the conductor and weight, of the first sign-change of Hecke eigenvalues. Here we improve the recent estimate of Iwaniec, Kohnen and Sengupta.
引用
收藏
页码:389 / 411
页数:23
相关论文
共 27 条
[11]   Variants of recognition problems for modular forms [J].
Kowalski, E .
ARCHIV DER MATHEMATIK, 2005, 84 (01) :57-70
[12]   The Two-Dimensional Distribution of Values of ζ(1+it) [J].
Lamzouri, Youness .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2008, 2008
[13]  
LAU YK, 2008, IMRN
[14]   On the least quadratic non-residue [J].
Lau, Yuk-Kam ;
Wu, Jie .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (03) :423-435
[15]  
Matomaki K., 2010, SIGNS FOURIER COEFFI
[16]   Finding meaning in error terms [J].
Mazur, Barry .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 45 (02) :185-228
[17]  
MICHEL P, ARXIV09033591V1
[18]  
Murty M. R., 1997, London Math. Soc. Lecture Note Ser., V247, P309
[19]  
MURTY VK, 1982, PROGR MATH, V26, P195
[20]   Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2) [J].
Ramakrishnan, D .
ANNALS OF MATHEMATICS, 2000, 152 (01) :45-111