Classical logic as limit completion

被引:8
作者
Berardi, S [1 ]
机构
[1] Univ Turin, Dept Comp Sci, I-10149 Turin, Italy
关键词
D O I
10.1017/S0960129504004529
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We define a constructive model for Delta(2)(0)-maps, that is, maps recursively definable from a map deciding the halting problem. Our model refines an existing constructive interpretation for classical reasoning over one-quantifier formulas: it is compositional (Modus Ponens is interpreted as an application) and semantical (rather than translating classical proofs into intuitionistic ones, we define a mathematical structure intuitionistically validating excluded middle for one-quantifier formulas).
引用
收藏
页码:167 / 200
页数:34
相关论文
共 4 条
[1]  
Ash CJ, 2000, COMPUTABLE STRUCTURE
[2]  
BERARDI S, 2004, MODEL DELTA MAPS INT
[3]   A SEMANTICS OF EVIDENCE FOR CLASSICAL ARITHMETIC [J].
COQUAND, T .
JOURNAL OF SYMBOLIC LOGIC, 1995, 60 (01) :325-337
[4]  
HAYASHI S, 2000, UNPUB SCI MATH JAPON, V53, P101