Sub-10 nm Ta Channel Responsible for Superior Performance of a HfO2 Memristor

被引:195
作者
Jiang, Hao [1 ]
Han, Lili [1 ,2 ]
Lin, Peng [1 ]
Wang, Zhongrui [1 ]
Jang, Moon Hyung [1 ,3 ]
Wu, Qing [4 ]
Barnell, Mark [4 ]
Yang, J. Joshua [3 ]
Xin, Huolin L. [2 ]
Xia, Qiangfei [1 ]
机构
[1] Univ Massachusetts, Nanodevices & Integrated Syst Lab, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[2] Brookhaven Natl Lab, Ctr Funct Nanomat, Upton, NY 11973 USA
[3] Univ Massachusetts, Ion & Elect Device & Mat Lab, Dept Elect & Comp Engn, Amherst, MA 01003 USA
[4] Air Force Res Lab, Informat Directorate, Rome, NY 13441 USA
来源
SCIENTIFIC REPORTS | 2016年 / 6卷
关键词
MECHANISMS; TANTALUM; GROWTH; DEVICE; MEMORY;
D O I
10.1038/srep28525
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Memristive devices are promising candidates for the next generation non-volatile memory and neuromorphic computing. It has been widely accepted that the motion of oxygen anions leads to the resistance changes for valence-change-memory (VCM) type of materials. Only very recently it was speculated that metal cations could also play an important role, but no direct physical characterizations have been reported yet. Here we report a Ta/HfO2/Pt memristor with fast switching speed, record high endurance (120 billion cycles) and reliable retention. We programmed the device to 24 discrete resistance levels, and also demonstrated over a million (2(20)) epochs of potentiation and depression, suggesting that our devices can be used for both multi-level non-volatile memory and neuromorphic computing applications. More importantly, we directly observed a sub-10 nm Ta-rich and O-deficient conduction channel within the HfO2 layer that is responsible for the switching. This work deepens our understanding of the resistance switching mechanism behind oxide-based memristive devices and paves the way for further device performance optimization for a broad spectrum of applications.
引用
收藏
页数:8
相关论文
共 49 条
[1]  
[Anonymous], INT ELL DIAGR
[2]  
Bear Mark F., 1994, Current Opinion in Neurobiology, V4, P389, DOI 10.1016/0959-4388(94)90101-5
[3]   Nanoscale molecular-switch crossbar circuits [J].
Chen, Y ;
Jung, GY ;
Ohlberg, DAA ;
Li, XM ;
Stewart, DR ;
Jeppesen, JO ;
Nielsen, KA ;
Stoddart, JF ;
Williams, RS .
NANOTECHNOLOGY, 2003, 14 (04) :462-468
[4]  
Chen Y, 2013, PROC IEEE INT SYMP
[5]   Retention failure analysis of metal-oxide based resistive memory [J].
Choi, Shinhyun ;
Lee, Jihang ;
Kim, Sungho ;
Lu, Wei D. .
APPLIED PHYSICS LETTERS, 2014, 105 (11)
[6]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+
[7]   Joint contributions of Ag ions and oxygen vacancies to conducting filament evolution of Ag/TaOx/Pt memory device [J].
Chung, Yu-Lung ;
Cheng, Wen-Hui ;
Jeng, Jiann-Shing ;
Chen, Wei-Chih ;
Jhan, Sheng-An ;
Chen, Jen-Sue .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (16)
[8]   MIGRATION OF METAL AND OXYGEN DURING ANODIC FILM FORMATION [J].
DAVIES, JA ;
DOMEIJ, B ;
PRINGLE, JPS ;
BROWN, F .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1965, 112 (07) :675-&
[9]   Polarization dependent two-photon properties in an organic crystal [J].
Fang, Hong-Hua ;
Yang, Jie ;
Ding, Ran ;
Chen, Qi-Dai ;
Wang, Lei ;
Xia, Hong ;
Feng, Jing ;
Ma, Yu-Guang ;
Sun, Hong-Bo .
APPLIED PHYSICS LETTERS, 2010, 97 (10)
[10]   Temperature Instability of Resistive Switching on HfOx-Based RRAM Devices [J].
Fang, Z. ;
Yu, H. Y. ;
Liu, W. J. ;
Wang, Z. R. ;
Tran, X. A. ;
Gao, B. ;
Kang, J. F. .
IEEE ELECTRON DEVICE LETTERS, 2010, 31 (05) :476-478