Efficient Numerical Optimal Control for Highly Oscillatory Systems

被引:5
作者
Harzer, Jakob [1 ]
De Schutter, Jochem [1 ]
Diehl, Moritz [2 ,3 ]
机构
[1] Univ Freiburg, Dept Microsyst Engn IMTEK, D-79110 Freiburg, Germany
[2] Univ Freiburg, Dept Microsyst Engn, D-79110 Freiburg, Germany
[3] Univ Freiburg, Dept Math, D-79110 Freiburg, Germany
来源
IEEE CONTROL SYSTEMS LETTERS | 2022年 / 6卷
关键词
Trajectory; Oscillators; Mathematical models; Optimal control; Predator prey systems; Numerical models; Visualization; Highly oscillatory; nonlinear systems; optimal control; numerical methods; OPTIMIZATION; ALGORITHM;
D O I
10.1109/LCSYS.2022.3175412
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an efficient transcription method for highly oscillatory optimal control problems. For these problems, the optimal state trajectory consists of fast oscillations that change slowly over the time horizon. Out of a large number of oscillations, we only simulate a subset to approximate the slow change by constructing a semi-explicit differential-algebraic equation that can be integrated with integration steps much larger than one period. For the solution of optimal control problems with direct methods, we provide a way to parametrize the controls and regularize the state trajectory. Finally, we utilize the method to find a fuel-optimal orbit transfer of a low-thrust satellite. Using the novel method, we reduce the size of the resulting nonlinear program by more than one order of magnitude.
引用
收藏
页码:2719 / 2724
页数:6
相关论文
共 15 条
[1]   CasADi: a software framework for nonlinear optimization and optimal control [J].
Andersson, Joel A. E. ;
Gillis, Joris ;
Horn, Greg ;
Rawlings, James B. ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2019, 11 (01) :1-36
[2]   Very low-thrust trajectory optimization using a direct SQP method [J].
Betts, JT .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 120 (1-2) :27-40
[3]   Numerical stroboscopic averaging for ODEs and DAEs [J].
Calvo, M. P. ;
Chartier, Ph. ;
Murua, A. ;
Sanz-Serna, J. M. .
APPLIED NUMERICAL MATHEMATICS, 2011, 61 (10) :1077-1095
[4]  
Gallivan K. A, 1980, DETECTION INTEGRATIO
[5]   Direct Optimization of Low-thrust Many-revolution Earth-orbit Transfers [J].
Gao Yang .
CHINESE JOURNAL OF AERONAUTICS, 2009, 22 (04) :426-433
[6]  
GEAR CW, 1982, LECT NOTES MATH, V968, P190
[7]  
Graf O., 1974, Proceedings of the Conference on Numerical Solutions of Ordinary Differential Equations, P471
[8]  
HSL, 2022, A collection of fortran codes for large scale scientific computation
[9]   Application of Envelope-Following Techniques to the Shooting Method [J].
Linaro, Daniele ;
del Giudice, Davide ;
Brambilla, Angelo ;
Bizzarri, Federico .
IEEE OPEN JOURNAL OF CIRCUITS AND SYSTEMS, 2020, 1 :22-33
[10]   A Versatile Time-Domain Approach to Simulate Oscillators in RF Circuits [J].
Maffezzoni, Paolo .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (03) :594-603