Relationships between conductor damage, quenching and electromechanical Behavior in YBCO coated conductors

被引:28
作者
Mbaruku, A. L. [1 ]
Trociewitz, U. P.
Wang, X.
Schwartz, J.
机构
[1] Natl High Magnet Field Lab, Tallahassee, FL 32310 USA
[2] FAMU FSU, Coll Engn, Tallahassee, FL 32310 USA
[3] Ctr Adv Power Syst, Tallahassee, FL 32310 USA
关键词
coated conductor; electromechanical behavior; quench damage effects;
D O I
10.1109/TASC.2007.898874
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The implementation of emerging superconducting materials into magnet systems with long service lifetimes requires a thorough understanding of their engineering properties, including their quench and electromechanical behaviors. Furthermore, it is essential to understand the role of defects in the conductor, whether they be pre-existing defects from the conductor manufacturing process that locally reduce J(c), or local defects that result from a non-destructive quench (i.e., a quench that may reduce J(c) locally but does not significantly affect the end-to-end behavior). This paper reports results on both of these types of defects and the interplay between quenching and electromechanical behavior. Quench studies investigate the initiation and propagation of quenches in coated conductors. Disturbances in homogeneous conductors are initiated by a pulsed heater attached to the conductor. Disturbances in locally damaged conductors are initiated by increasing the transport current above the I-c at the local defect but below the end-to-end I-c. Samples are quenched to determine the minimum quench energy and the quench propagation velocity. Homogeneous samples are also quenched to the point of initiating local damage, thereby identifying the maximum allowable hot-spot temperature or hot-spot temperature gradient. Samples used in quench studies are subsequently used in I-c-strain measurements to determine how quenching affects subsequent performance. Samples that exhibit reduced I-c from quenching, and samples from regions adjacent to such damaged samples, are studied. It is found that quenching can reduce the electromechanical performance of conductors that do not initially show a reduction in their electrical performance.
引用
收藏
页码:3044 / 3049
页数:6
相关论文
共 10 条
[1]   Reversible axial-strain effect and extended strain limits in Y-Ba-Cu-O coatings on deformation-textured substrates [J].
Cheggour, N ;
Ekin, JW ;
Clickner, CC ;
Verebelyi, DT ;
Thieme, CLH ;
Feenstra, R ;
Goyal, A .
APPLIED PHYSICS LETTERS, 2003, 83 (20) :4223-4225
[2]   Stability and quench protection of coated YBCO "composite" tape [J].
Iwasa, Y ;
Jankowski, J ;
Hahn, SY ;
Lee, H ;
Bascuñán, J ;
Reeves, J ;
Knoll, A ;
Xie, YY ;
Selvamanickam, V .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :1683-1686
[3]   Stability and protection of superconducting magnets - A discussion [J].
Iwasa, Y .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :1615-1620
[4]   Over-current testing of HTS tapes [J].
Lue, JWW ;
Gouge, MJ ;
Duckworth, RC .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :1835-1838
[5]   Development of a low-temperature electro-mechanical testing device [J].
Mbaruku, AL ;
Trociewitz, UP ;
Schwartz, J .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :3620-3623
[6]  
MBARUKU AL, 2006, THESIS FLORIDA STATE, P39
[7]  
SCHWARTZ J, 2003, CHARACTERIZATION MAT, P472
[8]  
Tillack D. J., 1991, ASM HDB, V4, P907
[9]   Normal zone propagation experiments on HTS composite conductors [J].
Trillaud, F ;
Palanki, H ;
Trociewitz, UP ;
Thompson, SH ;
Weijers, HW ;
Schwartz, J .
CRYOGENICS, 2003, 43 (3-5) :271-279
[10]   Normal zone initiation and propagation in Y-Ba-Cu-O coated conductors with Cu stabilizer [J].
Wang, XR ;
Caruso, AR ;
Breschi, M ;
Zhang, GM ;
Trociewitz, UP ;
Weijers, HW ;
Schwartz, J .
IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2005, 15 (02) :2586-2589