Motion by stopping: Rectifying Brownian motion of nonspherical particles

被引:13
|
作者
Sporer, Susan [1 ]
Goll, Christian [1 ]
Mecke, Klaus [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW E | 2008年 / 78卷 / 01期
关键词
D O I
10.1103/PhysRevE.78.011917
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that Brownian motion is spatially not symmetric for mesoscopic particles embedded in a fluid if the particle is not in thermal equilibrium and its shape is not spherical. In view of applications to molecular motors in biological cells, we sustain nonequilibrium by stopping a nonspherical particle at periodic sites along a filament. Molecular dynamics simulations in a Lennard-Jones fluid demonstrate that directed motion is possible without a ratchet potential or temperature gradients if the asymmetric nonequilibrium relaxation process is hindered by external stopping. Analytical calculations in the ideal gas limit show that motion even against a fluid drift is possible and that the direction of motion can be controlled by the shape of the particle, which is completely characterized by tensorial Minkowski functionals.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Free Brownian motion of relativistic particles
    Zygadlo, R
    PHYSICS LETTERS A, 2005, 345 (4-6) : 323 - 329
  • [22] BROWNIAN MOTION OF PARTICLES IN A MAGNETIC FIELD
    EVDOKIMO.VB
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY,USSR, 1969, 43 (02): : 242 - &
  • [23] THE BROWNIAN-MOTION OF CHANNELED PARTICLES
    KOSHCHEYEV, VP
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1985, 28 (10): : 108 - 109
  • [24] Stationary motion of active Brownian particles
    Deng, ML
    Zhu, WQ
    PHYSICAL REVIEW E, 2004, 69 (04): : 9 - 1
  • [25] BROWNIAN-MOTION OF QUANTUM PARTICLES
    MELNIKOV, VI
    MESHKOV, SV
    JETP LETTERS, 1983, 38 (03) : 130 - 133
  • [26] EQUATIONS FOR BROWNIAN MOTION OF AEROSOL PARTICLES
    VOLOSHCH.VM
    SEDUNOV, YS
    DOKLADY AKADEMII NAUK SSSR, 1969, 184 (04): : 834 - &
  • [27] Determination of the Velocity of Constrained Motion of Nonspherical Particles in Liquid
    A. M. Trushin
    E. A. Dmitriev
    R. B. Komlyashev
    M. V. Kulikov
    Theoretical Foundations of Chemical Engineering, 2017, 51 : 1043 - 1046
  • [28] Determination of the Velocity of Constrained Motion of Nonspherical Particles in Liquid
    Trushin, A. M.
    Dmitriev, E. A.
    Komlyashev, R. B.
    Kulikov, M. V.
    THEORETICAL FOUNDATIONS OF CHEMICAL ENGINEERING, 2017, 51 (06) : 1043 - 1046
  • [29] ANGULAR VELOCITY OF A NONSPHERICAL BODY UNDERGOING ROTATIONAL BROWNIAN-MOTION
    HUBBARD, PS
    PHYSICAL REVIEW A, 1977, 15 (01): : 329 - 336
  • [30] Brownian motion reflected on Brownian motion
    Burdzy, K
    Nualart, D
    PROBABILITY THEORY AND RELATED FIELDS, 2002, 122 (04) : 471 - 493