Solution-Processed Sintered Nanocrystal Solar Cells via Layer-by-Layer Assembly

被引:165
作者
Jasieniak, Jacek [1 ]
MacDonald, Brandon I. [1 ,2 ,3 ]
Watkins, Scott E. [1 ]
Mulvaney, Paul [2 ,3 ]
机构
[1] CSIRO, Clayton, Vic 3168, Australia
[2] Univ Melbourne, Sch Chem, Parkville, Vic 3010, Australia
[3] Univ Melbourne, Inst Bio21, Parkville, Vic 3010, Australia
基金
澳大利亚研究理事会;
关键词
Solar cell; nanocrystal; CdTe; sintered; layer-by-layer; solution processed; EFFICIENCY; FILMS; ENERGY; INK;
D O I
10.1021/nl201282v
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solar cells made by high temperature and vacuum processes from inorganic semiconductors are at a perceived cost disadvantage when compared with solution-processed systems such as organic and dye-sensitized solar cells. We demonstrate that totally solution processable solar cells can be fabricated from inorganic nanocrystal inks in air at temperature as low as 300 degrees C. Focusing on a CdTe/ZnO thin-film system, we report solar cells that achieve power conversion efficiencies of 6.9% with greater than 90% internal quantum efficiency. In our approach, nanocrystals are deposited from solution in a layer-by-layer process. Chemical and thermal treatments between layers induce large scale grain formation, turning the 4 nm CdTe particles into pinhole-free films with an optimized average crystallite size of similar to 70 rim. Through capacitance-voltage measurements we demonstrate that the CdTe layer is fully depleted which enables the charge carrier collection to be maximized.
引用
收藏
页码:2856 / 2864
页数:9
相关论文
共 38 条
[1]   Direct determination of the exciton binding energy of conjugated polymers using a scanning tunneling microscope [J].
Alvarado, SF ;
Seidler, PF ;
Lidzey, DG ;
Bradley, DDC .
PHYSICAL REVIEW LETTERS, 1998, 81 (05) :1082-1085
[2]   All-inorganic spin-cast nanoparticle solar cells with nonselective electrodes [J].
Anderson, I. E. ;
Breeze, A. J. ;
Olson, J. D. ;
Yang, L. ;
Sahoo, Y. ;
Carter, S. A. .
APPLIED PHYSICS LETTERS, 2009, 94 (06)
[3]   16.0% efficient thin-film CdS/CdTe solar cells [J].
Aramoto, T ;
Kumazawa, S ;
Higuchi, H ;
Arita, T ;
Shibutani, S ;
Nishio, T ;
Nakajima, J ;
Tsuji, M ;
Hanafusa, A ;
Hibino, T ;
Omura, K ;
Ohyama, H ;
Murozono, M .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 1997, 36 (10) :6304-6305
[4]   Polycrystalline CdTe thin films for photovoltaic applications [J].
Bosio, Alessio ;
Romeo, Nicola ;
Mazzamuto, Samantha ;
Canevari, Vittorio .
PROGRESS IN CRYSTAL GROWTH AND CHARACTERIZATION OF MATERIALS, 2006, 52 (04) :247-279
[5]   Organic photovoltaics: technology and market [J].
Brabec, CJ .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2004, 83 (2-3) :273-292
[6]   THIN-FILM CDS/CDTE SOLAR-CELL WITH 15.8-PERCENT EFFICIENCY [J].
BRITT, J ;
FEREKIDES, C .
APPLIED PHYSICS LETTERS, 1993, 62 (22) :2851-2852
[8]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[9]   Accounting for Interference, Scattering, and Electrode Absorption to Make Accurate Internal Quantum Efficiency Measurements in Organic and Other Thin Solar Cells [J].
Burkhard, George F. ;
Hoke, Eric T. ;
McGehee, Michael D. .
ADVANCED MATERIALS, 2010, 22 (30) :3293-+
[10]   Polymer solar cells with enhanced open-circuit voltage and efficiency [J].
Chen, Hsiang-Yu ;
Hou, Jianhui ;
Zhang, Shaoqing ;
Liang, Yongye ;
Yang, Guanwen ;
Yang, Yang ;
Yu, Luping ;
Wu, Yue ;
Li, Gang .
NATURE PHOTONICS, 2009, 3 (11) :649-653