Vector dissipative light bullets in optical laser beam

被引:11
作者
Djazet, Alain [1 ]
Tabi, Conrad B. [2 ]
Fewo, Serge, I [1 ]
Kofane, Timoleon C. [1 ,2 ,3 ]
机构
[1] Univ Yaounde I, Fac Sci, Dept Phys, Lab Mecan, BP 812, Yaounde, Cameroon
[2] Botswana Int Univ Sci & Technol, Dept Phys & Astron, Private Bag 16, Palapye, Botswana
[3] Univ Yaounde I, Ctr Excellence Africain Technol Informat & Commun, Yaounde, Cameroon
来源
APPLIED PHYSICS B-LASERS AND OPTICS | 2020年 / 126卷 / 05期
基金
美国国家科学基金会;
关键词
GINZBURG-LANDAU EQUATION; LOCALIZED STRUCTURES; SPATIOTEMPORAL CHAOS; PULSE-PROPAGATION; DYNAMICS; SOLITON; SYNCHRONIZATION; DEFECTS; MODEL;
D O I
10.1007/s00340-020-07422-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The dynamics of light bullets propagating in nonlinear media with linear/nonlinear, gain/loss and coupling described by the (2+1)-dimensional vectorial cubic-quintic complex Ginzburg-Landau (CGL) equations is considered. The evolution and the stability of the vector dissipative optical light bullets, generated from an asymmetric input with respect to two transverse coordinates x and y, are studied. We use the variational method to find a set of differential equations characterizing the variation of the light bullet parameters in the laser cavity. This approach allows us to analyze the influence of various physical parameters on the dynamics of the propagating beam and its relevant parameters. Then, we solve the original coupled (2+1)D cubic-quintic CGL equation using the split-step Fourier method. Numerical results and analytical predictions are confronted, and a good agreement between the two approaches is obtained.
引用
收藏
页数:10
相关论文
共 42 条
[1]   Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation [J].
Akhmediev, NN ;
Afanasjev, VV ;
SotoCrespo, JM .
PHYSICAL REVIEW E, 1996, 53 (01) :1190-1201
[2]   Synchronization of spatiotemporal chaos: The regime of coupled spatiotemporal intermittency [J].
Amengual, A ;
HernandezGarcia, E ;
Montagne, R ;
SanMiguel, M .
PHYSICAL REVIEW LETTERS, 1997, 78 (23) :4379-4382
[3]   Dissipative solitons with a Lagrangian approach [J].
Ankiewicz, Adrian ;
Akhmediev, Nall ;
Devine, Natasha .
OPTICAL FIBER TECHNOLOGY, 2007, 13 (02) :91-97
[4]   Optical spatial solitons: historical overview and recent advances [J].
Chen, Zhigang ;
Segev, Mordechai ;
Christodoulides, Demetrios N. .
REPORTS ON PROGRESS IN PHYSICS, 2012, 75 (08)
[5]   OPTICAL VORTICES [J].
COULLET, P ;
GIL, L ;
ROCCA, F .
OPTICS COMMUNICATIONS, 1989, 73 (05) :403-408
[6]   Collective variable theory for optical solitons in fibers [J].
Dinda, PT ;
Moubissi, AB ;
Nakkeeran, K .
PHYSICAL REVIEW E, 2001, 64 (01) :15-016608
[7]  
Djazet A., 2019, LASER 3 1 DIMENSIONA, DOI [10.20944/preprints201910.0171.v1, DOI 10.20944/PREPRINTS201910.0171.V1]
[8]   The cubic-quintic-septic complex Ginzburg-Landau equation formulation of optical pulse propagation in 3D doped Kerr media with higher-order dispersions [J].
Djoko, Martin ;
Kofane, T. C. .
OPTICS COMMUNICATIONS, 2018, 416 :190-201
[9]   Dissipative optical bullets modeled by the cubic-quintic-septic complex Ginzburg-Landau equation with higher-order dispersions [J].
Djoko, Martin ;
Kofane, T. C. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 48 :179-199
[10]   Complex-cubic Ginzburg-Landau equation-based model for erbium-doped fiber-amplifier supported nonreturn-to-zero communications [J].
Efremidis, N ;
Hizanidis, K .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (01) :63-74