Monocyte-derived macrophages matured under prolonged hypoxia transcriptionally up-regulate HIF-1α mRNA

被引:39
作者
Staples, Karl J. [1 ]
Sotoodehnejadnematalahi, Fattah [1 ]
Pearson, Helen [1 ]
Frankenberger, Marion [2 ,3 ]
Francescut, Lorenza [1 ]
Ziegler-Heitbrock, Loems [1 ,2 ,3 ]
Burke, Bernard [1 ]
机构
[1] Univ Leicester, Dept Infect Immun & Inflammat, Leicester LE1 9HN, Leics, England
[2] Asklepios Fachkliniken, Clin Cooperat Grp Inflammatory Lung Dis, D-82131 Gauting, Germany
[3] Helmholtz Zentrum Muenchen, D-82131 Gauting, Germany
基金
英国生物技术与生命科学研究理事会;
关键词
Differentiation; Gene regulation; Ischaemia; Mononuclear phagocytes; Oxygen; ENDOTHELIAL GROWTH-FACTOR; TISSUE OXYGEN-TENSION; INDUCIBLE FACTOR-I; GENE-EXPRESSION; KAPPA-B; FACTOR-1; CELLS; ACTIVATION; MECHANISMS; HIF-1;
D O I
10.1016/j.imbio.2010.12.005
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
This study tested the hypothesis that prolonged severe hypoxia during monocyte to macrophage differentiation results in macrophages with a pattern of gene expression and phenotype distinct from those maturing in normal oxygen levels. Macrophages accumulate in hypoxic and anoxic areas within pathological sites such as tumours, wounds, and arthritic joints, and have been proposed as vehicles for gene therapy delivery to such tissues. Several non-pathological tissues are also hypoxic. We therefore argue that differentiation from monocyte to macrophage in hypoxic conditions is a common occurrence. However, the effect of long term severe hypoxia on monocyte to macrophage differentiation has not been studied. Here, using primary human peripheral blood monocytes, we show that maturation for 5 days in 0.2% oxygen results in decreased phagocytosis, and decreased CD40 and CD206 expression. Chronic hypoxia induced much higher mRNA levels of the pro-angiogenic cytokine, VEGF, in adherence-purified macrophages (27-fold), CD14-magnetic bead purified monocytes (90-fold), and PBMC (104-fold) compared to acute (24h) hypoxia (11, 17 and 9-fold, respectively). This suggests that macrophages may play an even greater role in angiogenesis than previously appreciated. Furthermore, chronic hypoxia resulted in up-regulation of HIF-1 alpha mRNA, in all monocyte-derived macrophage types studied. Actinomycin D experiments indicate that the increases in HIF-1 alpha mRNA were not due to increased mRNA stability. To our knowledge this is the first study demonstrating up-regulation of HIF-1 alpha mRNA by hypoxia in macrophages. Taken together, the data support the hypothesis that hypoxia affects monocyte to macrophage maturation, resulting in a distinct gene expression pattern and phenotype. (C) 2010 Elsevier GmbH. All rights reserved.
引用
收藏
页码:832 / 839
页数:8
相关论文
共 62 条
[1]   Regulation of HIF prolyl hydroxylases by hypoxia-inducible factors [J].
Aprelikova, O ;
Chandramouli, GVR ;
Wood, M ;
Vasselli, JR ;
Riss, J ;
Maranchie, JK ;
Linehan, WM ;
Barrett, JC .
JOURNAL OF CELLULAR BIOCHEMISTRY, 2004, 92 (03) :491-501
[2]   Hypoxia up-regulates hypoxia-inducible factor-1α transcription by involving phosphatidylinositol 3-kinase and nuclear factor κB in pulmonary artery smooth muscle cells [J].
BelAiba, Rachida S. ;
Bonello, Steve ;
Zaehringer, Christian ;
Schmidt, Stefanie ;
Hess, John ;
Kietzmann, Thomas ;
Goerlach, Agnes .
MOLECULAR BIOLOGY OF THE CELL, 2007, 18 (12) :4691-4697
[3]   Hypoxic gene activation by lipopolysaccharide in macrophages:: Implication of hypoxia-inducible factor 1α [J].
Blouin, CC ;
Pagé, EL ;
Soucy, GM ;
Richard, DE .
BLOOD, 2004, 103 (03) :1124-1130
[4]   Reactive oxygen species activate the HIF-1α promoter via a functional NFκB site [J].
Bonello, Steve ;
Zahringer, Christian ;
BelAiba, Rachida S. ;
Djordjevic, Talija ;
Hess, John ;
Michiels, Carine ;
Kietzmann, Thomas ;
Goerlach, Agnes .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2007, 27 (04) :755-761
[5]   Hypoxia modifies the transcriptome of primary human monocytes: Modulation of novel immune-related genes and identification of CC-chemokine ligand 20 as a new hypoxia-inducible gene [J].
Bosco, Maria Carla ;
Puppo, Maura ;
Santangelo, Clara ;
Anfosso, Luca ;
Pfeffer, Ulrich ;
Fardin, Paolo ;
Battaglia, Florinda ;
Varesio, Luigi .
JOURNAL OF IMMUNOLOGY, 2006, 177 (03) :1941-1955
[6]   Comparison of tumor and normal tissue oxygen tension measurements using OxyLite or microelectrodes in rodents [J].
Braun, RD ;
Lanzen, JL ;
Snyder, SA ;
Dewhirst, MW .
AMERICAN JOURNAL OF PHYSIOLOGY-HEART AND CIRCULATORY PHYSIOLOGY, 2001, 280 (06) :H2533-H2544
[7]   Hypoxia-induced gene expression in human macrophages - Implications for ischemic tissues and hypoxia-regulated gene therapy [J].
Burke, B ;
Giannoudis, A ;
Corke, KP ;
Gill, D ;
Wells, M ;
Ziegler-Heitbrock, L ;
Lewis, CE .
AMERICAN JOURNAL OF PATHOLOGY, 2003, 163 (04) :1233-1243
[8]   Expression of HIF-Iα by human macrophages:: implications for the use of macrophages in hypoxia-regulated cancer gene therapy [J].
Burke, B ;
Tang, N ;
Corke, KP ;
Tazzyman, D ;
Ameri, K ;
Wells, M ;
Lewis, CE .
JOURNAL OF PATHOLOGY, 2002, 196 (02) :204-212
[9]   Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions [J].
Caldwell, CC ;
Kojima, H ;
Lukashev, D ;
Armstrong, J ;
Farber, M ;
Apasov, SG ;
Sitkovsky, MV .
JOURNAL OF IMMUNOLOGY, 2001, 167 (11) :6140-6149
[10]   HIF-1α is essential for myeloid cell-mediated inflammation [J].
Cramer, T ;
Yamanishi, Y ;
Clausen, BE ;
Förster, I ;
Pawlinski, R ;
Mackman, N ;
Haase, VH ;
Jaenisch, R ;
Corr, M ;
Nizet, V ;
Firestein, GS ;
Gerber, HP ;
Ferrara, N ;
Johnson, RS .
CELL, 2003, 112 (05) :645-657