Existence of closed geodesics on the moduli space of kappa-monopoles

被引:6
作者
Bielawski, R
机构
[1] Max-Planck-Institute für Mathematik, Bonn 53225
关键词
D O I
10.1088/0951-7715/9/6/004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the existence of non-constant closed geodesics on moduli spaces of SU(2) monopoles of arbitrary charge. More generally, we show that the moduli space of strongly centred monopoles of charge k, k greater than or equal to 2, contains a totally geodesic submanifold which can be identified with the moduli space of strongly centred 2-monopoles for even k's and with the moduli space of centred 2-monopoles for odd k's. This submanifold consists of monopoles corresponding to k collinear equally spaced particles.
引用
收藏
页码:1463 / 1467
页数:5
相关论文
共 14 条
[1]  
Atiyah M., 1988, GEOMETRY DYNAMICS MA
[2]  
BATES L, 1988, COMMUN MATH PHYS, V78, P635
[3]   ON THE EXISTENCE OF CLOSED GEODESICS ON NONCOMPACT RIEMANNIAN-MANIFOLDS [J].
BENCI, V ;
GIANNONI, F .
DUKE MATHEMATICAL JOURNAL, 1992, 68 (02) :195-215
[4]   Monopoles, particles and rational functions [J].
Bielawski, R .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1996, 14 (02) :123-145
[5]   NAHM EQUATIONS AND THE CLASSIFICATION OF MONOPOLES [J].
DONALDSON, SK .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1984, 96 (03) :387-407
[6]  
ERCOLANI N, 1986, COMMUN MATH PHYS, V85, P385
[7]  
GRAY A, 1966, MICH MATH J, V12, P85
[8]   HYPERKAHLER METRICS AND SUPERSYMMETRY [J].
HITCHIN, NJ ;
KARLHEDE, A ;
LINDSTROM, U ;
ROCEK, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1987, 108 (04) :535-589
[9]   SYMMETRIC MONOPOLES [J].
HITCHIN, NJ ;
MANTON, NS ;
MURRAY, MK .
NONLINEARITY, 1995, 8 (05) :661-692
[10]  
HOUGHTON CJ, 1996, INVERSION SYSMMETRIC