Global Existence and Full Regularity of the Boltzmann Equation Without Angular Cutoff

被引:85
作者
Alexandre, R. [1 ,2 ]
Morimoto, Y. [3 ]
Ukai, S.
Xu, C. -J. [4 ,5 ]
Yang, T. [6 ]
机构
[1] French Naval Acad, IRENAV Res Inst, F-29290 Brest, France
[2] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[3] Kyoto Univ, Grad Sch Human & Environm Studies, Kyoto 6068501, Japan
[4] Wuhan Univ, Sch Math, Wuhan 430072, Peoples R China
[5] Univ Rouen, UMR Math 6085, CNRS, F-76801 St Etienne, France
[6] City Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
SPATIALLY HOMOGENEOUS BOLTZMANN; FOURIER INTEGRAL-OPERATORS; POWER INTERMOLECULAR POTENTIALS; DEGENERATE ELLIPTIC-OPERATORS; LONG-RANGE INTERACTIONS; UNCERTAINTY PRINCIPLE; KINETIC-EQUATIONS; LANDAU EQUATIONS; SCHRODINGER-OPERATORS; LINEARIZED BOLTZMANN;
D O I
10.1007/s00220-011-1242-9
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove the global existence and uniqueness of classical solutions around an equilibrium to the Boltzmann equation without angular cutoff in some Sobolev spaces. In addition, the solutions thus obtained are shown to be non-negative and C (a) in all variables for any positive time. In this paper, we study the Maxwellian molecule type collision operator with mild singularity. One of the key observations is the introduction of a new important norm related to the singular behavior of the cross section in the collision operator. This norm captures the essential properties of the singularity and yields precisely the dissipation of the linearized collision operator through the celebrated H-theorem.
引用
收藏
页码:513 / 581
页数:69
相关论文
共 77 条
[1]   Uncertainty principle and kinetic equations [J].
Alexandre, R. ;
Morimoto, Y. ;
Ukai, S. ;
Xu, C-J. ;
Yang, T. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (08) :2013-2066
[2]   Entropy dissipation and long-range interactions [J].
Alexandre, R ;
Desvillettes, L ;
Villani, C ;
Wennberg, B .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2000, 152 (04) :327-355
[3]   Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations I. Non-cutoff case and Maxwellian molecules [J].
Alexandre, R ;
El Safadi, M .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (06) :907-920
[4]   On the Boltzmann equation for long-range interactions [J].
Alexandre, R ;
Villani, C .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) :30-70
[5]   Some solutions of the Boltzmann equation without angular cutoff [J].
Alexandre, R .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (1-2) :327-358
[6]   Around 3D Boltzmann non linear operator without angular cutoff, a new formulation [J].
Alexandre, R .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03) :575-590
[7]  
Alexandre R., 1999, TRANSPORT THEOR STAT, V28-5, P433
[8]  
Alexandre R., J FUNCT ANA IN PRESS
[9]  
Alexandre R., 2010, ANAL APPL IN PRESS
[10]  
Alexandre R., ARCH RATION IN PRESS