An end-to-end functional spiking model for sequential feature learning

被引:4
|
作者
Xie, Xiurui [1 ,2 ,3 ]
Liu, Guisong [1 ,2 ]
Cai, Qing [4 ]
Sun, Guolin [2 ]
Zhang, Malu [2 ,4 ]
Qu, Hong [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Comp Sci, Zhongshan Inst, Zhongshan 528400, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Comp Sci & Engn, Chengdu 610054, Peoples R China
[3] Agcy Sci Technol & Res, Inst Infocomm Res, Singapore, Singapore
[4] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore, Singapore
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Spiking neural network; Neuromorphic system; Sequential feature learning; Temporal encoding; NETWORKS; NEURONS;
D O I
10.1016/j.knosys.2020.105643
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Spiking Neural Network (SNN) has recently gained significant momentum in the neuromorphic low-power systems. However, the existing SNN models have limited use in time-sequential feature learning, and the exhausting spike encoding and decoding make the SNNs not straightforward to use. Inspired by the functional organization in the primate visual system, we propose an end-to-end functional spiking model in this paper to address these issues. Specifically, we propose the functional spike response to make each neuron special, and the dynamic synaptic efficiency to make the transmission of each input signal controllable. We represent inputs by a simple two-tuple set instead of conventional complex encoding, which achieves end-to-end learning. Experiments on synthetic datasets demonstrate that employing the two-tuple encoding strategy, our method improves the accuracy of the traditional SNN model significantly. In addition, we apply our method to seven real-world datasets and one human motion prediction dataset to investigate its performance. Experimental results show that the proposed functional spike response organization saves the running time of our model compared with the LSTM, GRU and one of the state-of-the-art time series processing methods. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] On-FPGA Spiking Neural Networks for End-to-End Neural Decoding
    Leone, Gianluca
    Raffo, Luigi
    Meloni, Paolo
    IEEE ACCESS, 2023, 11 : 41387 - 41399
  • [2] NEULP: An End-to-End Deep-Learning Model for Link Prediction
    Zhong, Zhiqiang
    Zhang, Yang
    Pang, Jun
    WEB INFORMATION SYSTEMS ENGINEERING, WISE 2020, PT I, 2020, 12342 : 96 - 108
  • [3] End-to-end driving model based on deep learning and attention mechanism
    Zhu, Wuqiang
    Lu, Yang
    Zhang, Yongliang
    Wei, Xing
    Wei, Zhen
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2022, 42 (04) : 3337 - 3348
  • [4] E3NE: An End-to-End Framework for Accelerating Spiking Neural Networks With Emerging Neural Encoding on FPGAs
    Gerlinghoff, Daniel
    Wang, Zhehui
    Gu, Xiaozhe
    Goh, Rick Siow Mong
    Luo, Tao
    IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2022, 33 (11) : 3207 - 3219
  • [5] An End-to-End Deep Learning Model for EEG-Based Major Depressive Disorder Classification
    Xia, Min
    Zhang, Yangsong
    Wu, Yihan
    Wang, Xiuzhu
    IEEE ACCESS, 2023, 11 : 41337 - 41347
  • [6] An End-to-End Deep Learning Framework for Wideband Signal Recognition
    Vagollari, Adela
    Hirschbeck, Martin
    Gerstacker, Wolfgang
    IEEE ACCESS, 2023, 11 : 52899 - 52922
  • [7] Learning reinforced attentional representation for end-to-end visual tracking
    Gao, Peng
    Zhang, Qiquan
    Wang, Fei
    Xiao, Liyi
    Fujita, Hamido
    Zhang, Yan
    INFORMATION SCIENCES, 2020, 517 : 52 - 67
  • [8] Indirect and direct training of spiking neural networks for end-to-end control of a lane-keeping vehicle
    Bing, Zhenshan
    Meschede, Claus
    Chen, Guang
    Knoll, Alois
    Huang, Kai
    NEURAL NETWORKS, 2020, 121 : 21 - 36
  • [9] Deep Learning Methods for Bug Bite Classification: An End-to-End System
    Ilijoski, Bojan
    Dineva, Katarina Trojachanec
    Ribarski, Biljana Tojtovska
    Petrov, Petar
    Mladenovska, Teodora
    Trajanoska, Milena
    Gjorshoska, Ivana
    Lameski, Petre
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [10] Classification of ALS Point Clouds Using End-to-End Deep Learning
    Winiwarter, Lukas
    Mandiburger, Gottfried
    Schmohl, Stefan
    Pfeifer, Norbert
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2019, 87 (03): : 75 - 90