KNO3-Assisted incorporation of K dopants and N defects into g-C3N4 with enhanced visible light driven photocatalytic H2O2 production

被引:12
|
作者
Yang, Haihua [1 ,2 ]
Qian, Xiaorong [1 ,2 ]
Zhang, Na [3 ]
Zhang, Li [1 ,2 ]
Zhou, Minjie [1 ,2 ]
机构
[1] Hunan Inst Sci & Technol, Key Lab Hunan Prov Adv Carbon Based Funct Mat, Yueyang 414006, Hunan, Peoples R China
[2] Hunan Inst Sci & Technol, Sch Chem & Chem Engn, Yueyang 414006, Hunan, Peoples R China
[3] Hunan Inst Sci & Technol, Sch Phys & Elect Sci, Yueyang 414006, Hunan, Peoples R China
关键词
GRAPHITIC CARBON NITRIDE; HYDROGEN-PEROXIDE; CO2; REDUCTION; DOPED G-C3N4; WATER; DEGRADATION; OXYGEN; NANOSHEETS; EVOLUTION; OXIDATION;
D O I
10.1039/d1nj04682a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Doping with heteroatoms and introducing defects are efficient protocols to enhance the photocatalytic performance of graphitic carbon nitride (g-C3N4) for H2O2 production. Herein, a facile one-pot KNO3-assisted thermal polymerization of thiourea and urea was reported for the modification of g-C3N4 with K dopants and N defects (denoted as M-CN-K-1). As a visible light photocatalyst with isopropanol as an electron donor, the obtained M-CN-K-1 sample exhibited an excellent H2O2 production activity of 2.92 mmol g(-1) g-C3N4 h(-1), which was 15.6, 5.8 and 2.2 times that of pristine g-C3N4 samples derived from urea, thiourea, and a mixture of thiourea and urea, respectively. The outstanding performance of the KNO3-modified g-C3N4 is attributed to the controllable introduction of cyano groups on the opened s-triazine heterocycle and K insertion into the g-C3N4 layers, which are conducive to regulating the morphology, electronic structure, and electron withdrawing and transfer capability. The KNO3-modified g-C3N4 possesses a lamellar structure with a high surface area, smaller energy gap for broadened visible light absorption, more negative conduction band position with stronger reduction ability, suppressed recombination of electron-hole pairs, and enhanced electron transfer, which exert a synergistic effect on the photocatalytic H2O2 production. The H2O2 formation in M-CN-K-1 undergoes the pathway of two-step one-electron indirect O-2 reduction (O-2 -> O-(2)-> H2O2). This study provides a facile and promising strategy for the modification of g-C3N4 to boost the photocatalytic H2O2 production activity.
引用
收藏
页码:22591 / 22601
页数:11
相关论文
共 50 条
  • [1] Isotype junctioned nanotubes and nanosheets of g-C3N4 for enhanced visible-light driven photocatalytic H2O2 production
    Yunxiao Zhang
    Mengfan Fang
    Xiaorong Qian
    Li Zhang
    Pei Gu
    Yu Liu
    Haihua Yang
    Journal of Materials Research, 2021, 36 : 3495 - 3505
  • [2] Isotype junctioned nanotubes and nanosheets of g-C3N4 for enhanced visible-light driven photocatalytic H2O2 production
    Zhang, Yunxiao
    Fang, Mengfan
    Qian, Xiaorong
    Zhang, Li
    Gu, Pei
    Liu, Yu
    Yang, Haihua
    JOURNAL OF MATERIALS RESEARCH, 2021, 36 (17) : 3495 - 3505
  • [3] Enhanced solar-light driven H2O2 2 O 2 production with g-C3N4 3 N 4 nanosheets by defect engineering
    Sun, Yan
    Wang, Dongying
    Yang, Yong
    Zhao, Qianru
    Yang, Shanshan
    Luo, Xi
    Zhao, Qiang
    Zhang, Jin Zhong
    SURFACES AND INTERFACES, 2024, 51
  • [4] Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2
    Zhu, Zedong
    Pan, Honghui
    Murugananthan, Muthu
    Gong, Jianyu
    Zhang, Yanrong
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 232 : 19 - 25
  • [5] Enhanced photocatalytic activity of brown H4Nb6O17/g-C3N4 composite for visible-light driven H2O2 production
    Zhang, Luona
    Zhao, Shiqi
    Cheng, Xiaorong
    Liu, Zijie
    Liu, Ruochen
    Dawson, Graham
    ENERGY ADVANCES, 2022, 1 (03): : 169 - 176
  • [6] Visible-Light-Driven Photocatalytic H2O2 Production on g-C3N4 Loaded with CoP as a Noble Metal Free Cocatalyst
    Peng, Yulan
    Wang, Lingzhi
    Liu, Yongdi
    Chen, Haijun
    Lei, Juying
    Zhang, Jinlong
    EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, 2017, (40) : 4797 - 4802
  • [7] Recyclable g-C3N4 and K-doped g-C3N4 pellets for the photocatalytic production of H2O2 under direct sunlight
    Kumar, Manisha S.
    Haripriya, P.
    Kumar, Darbha V. Ravi
    CHEMICAL PAPERS, 2024, 78 (15) : 8465 - 8472
  • [8] Enhanced visible light photocatalytic activity of W-doped porous g-C3N4 and effect of H2O2
    Rong, Xinshan
    Qiu, Fengxian
    Rong, Jian
    Zhu, Xiaolu
    Yan, Jie
    Yang, Dongya
    MATERIALS LETTERS, 2016, 164 : 127 - 131
  • [9] Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies
    Li, Shuna
    Dong, Guohui
    Hailili, Reshalaiti
    Yang, Liping
    Li, Yingxuan
    Wang, Fu
    Zeng, Yubin
    Wang, Chuanyi
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2016, 190 : 26 - 35
  • [10] Enhanced Visible-Light H2O2 Production over Pt/g-C3N4 Schottky Junction Photocatalyst
    Nie, Longhui
    Chen, Heng
    Wang, Jing
    Yang, Yiqiong
    Fang, Caihong
    INORGANIC CHEMISTRY, 2024, 63 (10) : 4770 - 4782