Comparison of semiquantitative chest CT scoring systems to estimate severity in coronavirus disease 2019 (COVID-19) pneumonia

被引:16
作者
Inoue, Akitoshi [1 ,2 ]
Takahashi, Hiroaki [2 ]
Ibe, Tatsuya [3 ]
Ishii, Hisashi [3 ]
Kurata, Yuhei [3 ]
Ishizuka, Yoshikazu [4 ]
Hamamoto, Yoichiro [3 ]
机构
[1] Shiga Univ Med Sci, Dept Radiol, Otsu, Shiga, Japan
[2] Mayo Clin, Dept Radiol, 200 First St SW, Rochester, MN 55905 USA
[3] Natl Hosp Org Nishisaitama Chuo Natl Hosp, Dept Pulm Med, Tokorozawa, Saitama, Japan
[4] Natl Hosp Org Nishisaitama Chuo Natl Hosp, Dept Radiol, Tokorozawa, Saitama, Japan
关键词
COVID-19; SARS-CoV-2; Severity of illness index; Lung volume measurements; Multidetector computed tomography;
D O I
10.1007/s00330-021-08435-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To compare the clinical usefulness among three different semiquantitative computed tomography (CT) severity scoring systems for coronavirus disease 2019 (COVID-19) pneumonia. Methods Two radiologists independently reviewed chest CT images in 108 patients to rate three CT scoring systems (total CT score [TSS], chest CT score [CCTS], and CT severity score [CTSS]). We made a minor modification to CTSS. Quantitative dense area ratio (QDAR: the ratio of lung involvement to lung parenchyma) was calculated using the U-net model. Clinical severity at admission was classified as severe (n = 14) or mild (n = 94). Interobserver agreement, interpretation time, and degree of correlation with clinical severity as well as QDAR were evaluated. Results Interobserver agreement was excellent (intraclass correlation coefficient: 0.952-0.970, p < 0.001). Mean interpretation time was significantly longer in CTSS (48.9-80.0 s) than in TSS (25.7-41.7 s, p < 0.001) and CCTS (27.7-39.5 s, p < 0.001). Area under the curve for differentiating clinical severity at admission was 0.855-0.842 in TSS, 0.853-0.850 in CCTS, and 0.853-0.836 in CTSS. All scoring systems correlated with QDAR in the order of CCTS (rho = 0.443-0.448), TSS (rho = 0.435-0.437), and CTSS (rho = 0.415-0.426). Conclusions All semiquantitative scoring systems demonstrated substantial diagnostic performance for clinical severity at admission with excellent interobserver agreement. Interpretation time was significantly shorter in TSS and CCTS than in CTSS. The correlation between the scoring system and QDAR was highest in CCTS, followed by TSS and CTSS. CCTS appeared to be the most appropriate CT scoring system for clinical practice.
引用
收藏
页码:3513 / 3524
页数:12
相关论文
共 24 条
[1]   Chest CT Features of COVID-19 in Rome, Italy [J].
Caruso, Damiano ;
Zerunian, Marta ;
Polici, Michela ;
Pucciarelli, Francesco ;
Polidori, Tiziano ;
Rucci, Carlotta ;
Guido, Gisella ;
Bracci, Benedetta ;
De Dominicis, Chiara ;
Laghi, Andrea .
RADIOLOGY, 2020, 296 (02) :E79-E85
[2]   Chest Computed Tomography Findings in Asymptomatic Patients with COVID-19 [J].
Chang, Min Cheol ;
Lee, Wonho ;
Hur, Jian ;
Park, Donghwi .
RESPIRATION, 2020, 99 (09) :748-754
[3]   Pulmonary sequelae in convalescent patients after severe acute respiratory syndrome: Evaluation with thin-section CT [J].
Chang, YC ;
Yu, CJ ;
Chang, SC ;
Galvin, JR ;
Liu, HM ;
Hsiao, CH ;
Kuo, PH ;
Chen, KY ;
Franks, TJ ;
Huang, KM ;
Yang, PC .
RADIOLOGY, 2005, 236 (03) :1067-1075
[4]   Comprehensive review of coronavirus disease 2019 (COVID-19) [J].
Chauhan, Shaylika .
BIOMEDICAL JOURNAL, 2020, 43 (04) :334-340
[5]   Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR (Publication with Expression of Concern) [J].
Corman, Victor M. ;
Landt, Olfert ;
Kaiser, Marco ;
Molenkamp, Richard ;
Meijer, Adam ;
Chu, Daniel K. W. ;
Bleicker, Tobias ;
Bruenink, Sebastian ;
Schneider, Julia ;
Schmidt, Marie Luisa ;
Mulders, Daphne G. J. C. ;
Haagmans, Bart L. ;
van der Veer, Bas ;
van den Brink, Sharon ;
Wijsman, Lisa ;
Goderski, Gabriel ;
Romette, Jean-Louis ;
Ellis, Joanna ;
Zambon, Maria ;
Peiris, Malik ;
Goossens, Herman ;
Reusken, Chantal ;
Koopmans, Marion P. G. ;
Drosten, Christian .
EUROSURVEILLANCE, 2020, 25 (03) :23-30
[6]   Visual and software-based quantitative chest CT assessment of COVID-19: correlation with clinical findings [J].
Durhan, Gamze ;
Duzgun, Selin Ardali ;
Demirkazik, Figen Basaran ;
Irmak, Ilim ;
Idilman, Ilkay ;
Akpinar, Meltem Gulsun ;
Akpinar, Erhan ;
Ocal, Serpil ;
Telli, Gulcin ;
Topeli, Arzu ;
Ariyurek, Orhan Macit .
DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY, 2020, 26 (06) :557-564
[7]   Organ-specific manifestations of COVID-19 infection [J].
Gavriatopoulou, Maria ;
Korompoki, Eleni ;
Fotiou, Despina ;
Ntanasis-Stathopoulos, Ioannis ;
Psaltopoulou, Theodora ;
Kastritis, Efstathios ;
Terpos, Evangelos ;
Dimopoulos, Meletios A. .
CLINICAL AND EXPERIMENTAL MEDICINE, 2020, 20 (04) :493-506
[8]   Extrapulmonary manifestations of COVID-19 [J].
Gupta, Aakriti ;
Madhavan, Mahesh V. ;
Sehgal, Kartik ;
Nair, Nandini ;
Mahajan, Shiwani ;
Sehrawat, Tejasav S. ;
Bikdeli, Behnood ;
Ahluwalia, Neha ;
Ausiello, John C. ;
Wan, Elaine Y. ;
Freedberg, Daniel E. ;
Kirtane, Ajay J. ;
Parikh, Sahil A. ;
Maurer, Mathew S. ;
Nordvig, Anna S. ;
Accili, Domenico ;
Bathon, Joan M. ;
Mohan, Sumit ;
Bauer, Kenneth A. ;
Leon, Martin B. ;
Krumholz, Harlan M. ;
Uriel, Nir ;
Mehra, Mandeep R. ;
Elkind, Mitchell S. V. ;
Stone, Gregg W. ;
Schwartz, Allan ;
Ho, David D. ;
Bilezikian, John P. ;
Landry, Donald W. .
NATURE MEDICINE, 2020, 26 (07) :1017-1032
[9]   Automatic lung segmentation in routine imaging is primarily a data diversity problem, not a methodology problem [J].
Hofmanninger, Johannes ;
Prayer, Forian ;
Pan, Jeanny ;
Roehrich, Sebastian ;
Prosch, Helmut ;
Langs, Georg .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2020, 4 (01)
[10]   Computed tomography semi-automated lung volume quantification in SARS-CoV-2-related pneumonia [J].
Ippolito, Davide ;
Ragusi, Maria ;
Gandola, Davide ;
Maino, Cesare ;
Pecorelli, Anna ;
Terrani, Simone ;
Peroni, Marta ;
Giandola, Teresa ;
Porta, Marco ;
Franzesi, Cammillo Talei ;
Sironi, Sandro .
EUROPEAN RADIOLOGY, 2021, 31 (05) :2726-2736