Multilevel memristor effect in metal-semiconductor core-shell nanoparticles tested by scanning tunneling spectroscopy

被引:21
作者
Chakrabarti, Sudipto [1 ]
Pal, Amlan J. [1 ]
机构
[1] Indian Assoc Cultivat Sci, Dept Solid State Phys, Kolkata 700032, India
关键词
NONVOLATILE MEMORY DEVICES; GOLD NANOPARTICLES; SILICON-OXIDE; NANOCRYSTALS; MICROSCOPE; CIRCUITS; HYDROGEN; FILMS; GATE;
D O I
10.1039/c5nr01161b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We have grown gold (Au) and copper-zinc-tin-sulfide (CZTS) nanocrystals and Au-CZTS core-shell nanostructures, with gold in the core and the semiconductor in the shell layer, through a high-temperature colloidal synthetic approach. Following usual characterization, we formed ultrathin layers of these in order to characterize the nanostructures in an ultrahigh-vacuum scanning tunneling microscope. Scanning tunneling spectroscopy of individual nanostructures showed the memristor effect or resistive switching from a low-to a high-conducting state upon application of a suitable voltage pulse. The Au-CZTS core-shell nanostructures also show a multilevel memristor effect with the nanostructures undergoing two transitions in conductance at two magnitudes of voltage pulse. We have studied the reproducibility, reversibility, and retentivity of the multilevel memristors. From the normalized density of states (NDOS), we infer that the memristor effect is correlated to a decrease in the transport gap of the nanostructures. We also infer that the memristor effect occurs in the nanostructures due to an increase in the density of available states upon application of a voltage pulse.
引用
收藏
页码:9886 / 9893
页数:8
相关论文
共 31 条
[1]   Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy [J].
Ageev, O. A. ;
Blinov, Yu. F. ;
Il'in, O. I. ;
Kolomiitsev, A. S. ;
Konoplev, B. G. ;
Rubashkina, M. V. ;
Smirnov, V. A. ;
Fedotov, A. A. .
TECHNICAL PHYSICS, 2013, 58 (12) :1831-1836
[2]   Optimization of an organic memristor as an adaptive memory element [J].
Berzina, Tatiana ;
Smerieri, Anteo ;
Bernabo, Marco ;
Pucci, Andrea ;
Ruggeri, Giacomo ;
Erokhin, Victor ;
Fontana, M. P. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (12)
[3]   Electronic properties of molecular memory circuits on a nanoscale scaffold [J].
Blum, Amy Szuchmacher ;
Soto, Carissa M. ;
Wilson, Charmaine D. ;
Amsinck, Christian ;
Franzon, Paul ;
Ratna, Banahalli R. .
IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2007, 6 (04) :270-274
[4]   Resistance Switching Induced by Hydrogen and Oxygen in Diamond-Like Carbon Memristor [J].
Chen, Yi-Jiun ;
Chang, Kuan-Chang ;
Chang, Ting-Chang ;
Chen, Hsin-Lu ;
Young, Tai-Fa ;
Tsai, Tsung-Ming ;
Zhang, Rui ;
Chu, Tian-Jian ;
Ciou, Jian-Fa ;
Lou, Jen-Chung ;
Chen, Kai-Huang ;
Chen, Jung-Hui ;
Zheng, Jin-Cheng ;
Sze, Simon M. .
IEEE ELECTRON DEVICE LETTERS, 2014, 35 (10) :1016-1018
[5]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+
[6]   A bit per particle: Electrostatic assembly of CdSe quantum dots as memory elements [J].
Das, Bikas C. ;
Batabyal, Sudip K. ;
Pal, Amlan J. .
ADVANCED MATERIALS, 2007, 19 (23) :4172-+
[7]   Nanoscale Plasmonic Memristor with Optical Readout Functionality [J].
Emboras, Alexandros ;
Goykhman, Ilya ;
Desiatov, Boris ;
Mazurski, Noa ;
Stern, Liron ;
Shappir, Joseph ;
Levy, Uriel .
NANO LETTERS, 2013, 13 (12) :6151-6155
[8]   Tunnel conductivity switching in a single nanoparticle-based nano floating gate memory [J].
Gambardella, Alessandro ;
Prezioso, Mirko ;
Cavallini, Massimiliano .
SCIENTIFIC REPORTS, 2014, 4
[9]   Enhancing charge-storage capacity of non-volatile memory devices using template-directed assembly of gold nanoparticles [J].
Gupta, Raju Kumar ;
Krishnamoorthy, Sivashankar ;
Kusuma, Damar Yoga ;
Lee, Pooi See ;
Srinivasan, M. P. .
NANOSCALE, 2012, 4 (07) :2296-2300
[10]   Significant Enhancement in Photocatalytic Reduction of Water to Hydrogen by Au/Cu2ZnSnS4 Nanostructure [J].
Ha, Enna ;
Lee, Lawrence Yoon Suk ;
Wang, Jingchuan ;
Li, Fenghua ;
Wong, Kwok-Yin ;
Tsang, Shik Chi Edman .
ADVANCED MATERIALS, 2014, 26 (21) :3496-3500