Decomposing complete equipartite graphs into odd square-length cycles: Number of parts even

被引:2
作者
Smith, Benjamin R. [2 ]
Cavenagh, Nicholas [1 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
[2] Univ Queensland, Ctr Discrete Math & Comp, Dept Math, Brisbane, Qld 4072, Australia
关键词
Graph decomposition; Cycle decomposition; Complete equipartite graph; OBERWOLFACH PROBLEM; K-N; CIRCUITS; PATH;
D O I
10.1016/j.disc.2012.02.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we show that the complete equipartite graph with n parts, each of size 2k, decomposes into cycles of length lambda(2) for any even n >= 4, any integer k >= 3 and any odd lambda such that 3 <= lambda < root 2nk and lambda divides k. As a corollary, we obtain necessary and sufficient conditions for the decomposition of any complete equipartite graph with an even number of parts into cycles of length p(2), where p is prime. In proving our main result, we have also shown the following. Let lambda >= 3 and n >= 4 be odd and even integers, respectively. Then there exists a decomposition of the lambda-fold complete equipartite graph with n parts, each of size 2k, into cycles of length A if and only if lambda < 2kn. In particular, if we take the complete graph on 2n vertices, remove a 1-factor, then increase the multiplicity of each edge to lambda. the resultant graph decomposes into cycles of length lambda if and only if lambda < 2n. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:1611 / 1622
页数:12
相关论文
共 13 条
  • [1] Cycle decompositions of Kn and Kn-I
    Alspach, B
    Gavlas, H
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 81 (01) : 77 - 99
  • [2] Packing circuits into KN
    Balister, P
    [J]. COMBINATORICS PROBABILITY & COMPUTING, 2001, 10 (06) : 463 - 499
  • [3] Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts
    Billington, Elizabeth J.
    Cavenagh, Nicholas J.
    Smith, Benjamin R.
    [J]. DISCRETE MATHEMATICS, 2010, 310 (02) : 241 - 254
  • [4] Path and cycle decompositions of complete equipartite graphs: Four parts
    Billington, Elizabeth J.
    Cavenagh, Nicholas J.
    Smith, Benjamin R.
    [J]. DISCRETE MATHEMATICS, 2009, 309 (10) : 3061 - 3073
  • [5] Cavenagh N.J., 1998, J COMBINATORICS, V18, P193
  • [6] Decompositions of complete multipartite graphs into cycles of even length
    Cavenagh, NJ
    Billington, EJ
    [J]. GRAPHS AND COMBINATORICS, 2000, 16 (01) : 49 - 65
  • [7] The equipartite Oberwolfach problem with uniform tables
    Liu, JQ
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2003, 101 (01) : 20 - 34
  • [8] Liu JQ, 2000, J COMB DES, V8, P42, DOI 10.1002/(SICI)1520-6610(2000)8:1<42::AID-JCD6>3.0.CO
  • [9] 2-R
  • [10] Cp-decompositions of some regular graphs
    Manikandan, R. S.
    Paulraja, P.
    [J]. DISCRETE MATHEMATICS, 2006, 306 (04) : 429 - 451