An intersection theorem in L-convex spaces with applications

被引:13
作者
Lu, HS [1 ]
Tang, DS
机构
[1] Hohai Univ, Sch Business, Nanjing 210098, Peoples R China
[2] Hohai Univ, Coll Water Conservancy & Hydropower Engn, Nanjing 210098, Jiangsu, Peoples R China
关键词
intersection theorem; fixed point; maximal element; coincidence theorem; minimax inequality; L-quasiconcave (quasiconvex); transfer compactly closed-valued (open-valued);
D O I
10.1016/j.jmaa.2005.03.085
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new intersection theorem is obtained in L-convex spaces without linear structure. As its applications, a fixed point theorem, a maximal element theorem, a coincidence theorem, some new minimax inequalities and a saddle point theorem are given in L-convex spaces. Our results generalize many known theorems in the literature. (c) 2005 Published by Elsevier Inc.
引用
收藏
页码:343 / 356
页数:14
相关论文
共 16 条
[1]  
Aubin J P., 1984, Applied nonlinear analysis
[2]   Abstract convexity and fixed points [J].
Ben-El-Mechaiekh, H ;
Chebbi, S ;
Florenzano, M ;
Llinares, JV .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 222 (01) :138-150
[3]  
Browder F.E., 1984, CONT MATH, V26, P47
[4]   Generalized G-KKM theorems in generalized convex spaces and their applications [J].
Ding, MP .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (01) :21-37
[5]  
Ding XP, 2002, COMPUT MATH APPL, V43, P1249, DOI 10.1016/S0898-1221(02)00096-2
[6]   SOME PROPERTIES OF CONVEX-SETS RELATED TO FIXED-POINT THEOREMS [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1984, 266 (04) :519-537
[7]  
Fan K., 1972, INEQUALITIES, P103
[8]   MINIMAX AND FIXED-POINT THEOREMS [J].
HA, CW .
MATHEMATISCHE ANNALEN, 1980, 248 (01) :73-77
[9]   ON A MINIMAX INEQUALITY OF KY FAN [J].
HA, CW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) :680-682
[10]  
KORMIYA H, 1986, P AM MATH SOC, V96, P59