Diffusion for chaotic plane sections of 3-periodic surfaces

被引:30
|
作者
Avila, Artur [1 ,2 ]
Hubert, Pascal [3 ]
Skripchenko, Alexandra [4 ]
机构
[1] Paris Rive Gauche, Inst Math Jussieu, CNRS UMR 7586, Batiment Sophie Germain,Case 7021, F-75205 Paris 13, France
[2] IMPA, Estrada Dona Castarino 110, BR-22460320 Rio De Janeiro, Brazil
[3] Inst Math Marseille, 39 Rue F Joliot Curie, F-13453 Marseille 20, France
[4] Natl Res Univ Higher Sch Econ, Fac Math, Vavilova St 7, Moscow 112312, Russia
关键词
INTERVAL EXCHANGE TRANSFORMATIONS; TEICHMULLER FLOW; MODULI SPACE; PSEUDOGROUPS; SIMPLICITY; UNIQUENESS; FORMALISM; DEVIATION; EXISTENCE; DYNAMICS;
D O I
10.1007/s00222-016-0650-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study chaotic plane sections of some particular family of triply periodic surfaces. The question about possible behavior of such sections was posed by S. P. Novikov. We prove some estimations on the diffusion rate of these sections using the connection between Novikov's problem and systems of isometries-some natural generalization of interval exchange transformations. Using thermodynamical formalism, we construct an invariant measure for systems of isometries of a special class called the Rauzy gasket, and investigate the main properties of the Lyapunov spectrum of the corresponding suspension flow.
引用
收藏
页码:109 / 146
页数:38
相关论文
共 50 条