Rational design 2D/2D BiOBr/CDs/g-C3N4 Z-scheme heterojunction photocatalyst with carbon dots as solid-state electron mediators for enhanced visible and NIR photocatalytic activity: Kinetics, intermediates, and mechanism insight

被引:312
作者
Zhang, Mingming [1 ,2 ]
Lai, Cui [1 ,2 ,3 ]
Li, Bisheng [1 ,2 ]
Huang, Danlian [1 ,2 ]
Zeng, Guangming [1 ,2 ]
Xu, Piao [1 ,2 ]
Qin, Lei [1 ,2 ]
Liu, Shiyu [1 ,2 ]
Liu, Xigui [1 ,2 ]
Yi, Huan [1 ,2 ]
Li, Minfang [1 ,2 ]
Chu, Chengcheng [1 ,2 ]
Chen, Zhang [3 ]
机构
[1] Hunan Univ, Coll Environm Sci & Engn, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Key Lab Environm Biol & Pollut Control, Minist Educ, Changsha 410082, Hunan, Peoples R China
[3] Hunan Prov Key Lab Coal Resources Clean Utilizat, Changsha, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Photocatalysis; Z-scheme system; Photocatalytic activity; BiOBr/CDs/g-C3N4; Photocatalytic mechanism; G-C3N4; NANOSHEETS; EFFICIENT DEGRADATION; SELECTIVE OXIDATION; BIOBR NANOSHEETS; MODIFIED BIVO4; QUANTUM DOTS; NITRIDE; WATER; COMPOSITES; AG;
D O I
10.1016/j.jcat.2018.11.029
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Rapid recombination of photogenerated carriers and narrow visible light absorption range are two main defects in graphitic carbon nitride (g-C3N4)-based photocatalysts. To address these problems, construction of Z-scheme 2D/2D BiOBr/CDs/g-C3N4 heterojunction photocatalysts with carbon dots as solid-state electron mediators has been investigated. The resultant BiOBr/CDs/g-C3N4 hybrids exhibits remarkable interfacial charge transfer abilities and a broadened solar light absorption range owing to the short charge transport distance and the up-converted photoluminescence character of CDs. Simultaneously, the enhanced specific surface area and nanosheet structure impart more active sites to BiOBr/CDs/g-C3N4 composites. As a result, BiOBr/CDs/g-C3N4 composites reveal significant enhancement in the activity of photodegradation of ciprofloxacin (CIP) and tetracycline (TC) under visible and near infrared (NIR) light irradiation. Moreover, the photodegradation efficiency of BiOBr/CDs/g-C3N4 hybrids was significantly enhanced over that of pristine BiOBr nanosheets and g-C3N4 ultrathin nanosheets. The photocatalytic mechanism is expounded according to free radical capture experiments and electron spin resonance spin-trapping tests and the photodegradation intermediates of CIP were detected by liquid chromatography-mass/mass spectrometry. Moreover, BiOBr/CDs/g-C3N4 composites show excellent photostability and reusability after four runs for CIP degradation. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:469 / 481
页数:13
相关论文
共 55 条
[1]   Polymeric Photocatalysts Based on Graphitic Carbon Nitride [J].
Cao, Shaowen ;
Low, Jingxiang ;
Yu, Jiaguo ;
Jaroniec, Mietek .
ADVANCED MATERIALS, 2015, 27 (13) :2150-2176
[2]   Novel ternary heterojunction photcocatalyst of Ag nanoparticles and g-C3N4 nanosheets co-modified BiVO4 for wider spectrum visible-light photocatalytic degradation of refractory pollutant [J].
Chen, Fei ;
Yang, Qi ;
Wang, Yali ;
Zhao, Jianwei ;
Wang, Dongbo ;
Li, Xiaoming ;
Guo, Zhi ;
Wang, Hou ;
Deng, Yaocheng ;
Niu, Chenggang ;
Zeng, Guangming .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 205 :133-147
[3]   Photo-reduction of bromate in drinking water by metallic Ag and reduced graphene oxide (RGO) jointly modified BiVO4 under visible light irradiation [J].
Chen, Fei ;
Yang, Qi ;
Zhong, Yu ;
An, Hongxue ;
Zhao, Jianwei ;
Xie, Ting ;
Xu, Qiuxiang ;
Li, Xiaoming ;
Wang, Dongbo ;
Zeng, Guangming .
WATER RESEARCH, 2016, 101 :555-563
[4]   Efficient degradation of sulfamethazine in simulated and real wastewater at slightly basic pH values using Co-SAM-SCS /H2O2 Fenton-like system [J].
Cheng, Min ;
Zeng, Guangming ;
Huang, Danlian ;
Lai, Cui ;
Liu, Yang ;
Zhang, Chen ;
Wan, Jia ;
Hu, Liang ;
Zhou, Chengyun ;
Xiong, Weiping .
WATER RESEARCH, 2018, 138 :7-18
[5]   Insight into the dual-channel charge-charrier transfer path for nonmetal plasmonic tungsten oxide based composites with boosted photocatalytic activity under full-spectrum light [J].
Deng, Yaocheng ;
Tang, Lin ;
Feng, Chengyang ;
Zeng, Guangming ;
Chen, Zhaoming ;
Wang, Jiajia ;
Feng, Haopeng ;
Peng, Bo ;
Liu, Yani ;
Zhou, Yaoyu .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2018, 235 :225-237
[6]   Construction of Plasmonic Ag and Nitrogen-Doped Graphene Quantum Dots Codecorated Ultrathin Graphitic Carbon Nitride Nanosheet Composites with Enhanced Photocatalytic Activity: Full-Spectrum Response Ability and Mechanism Insight [J].
Deng, Yaocheng ;
Tang, Lin ;
Feng, Cheugyang ;
Zeng, Guanming ;
Wang, Jiajia ;
Lu, Yue ;
Liu, Yani ;
Yu, Jiangfang ;
Chen, Song ;
Zhou, Yaoyu .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (49) :42816-42828
[7]   Bismuth oxyhalide layered materials for energy and environmental applications [J].
Di, Jun ;
Xia, Jiexiang ;
Li, Huaming ;
Guo, Shaojun ;
Dai, Sheng .
NANO ENERGY, 2017, 41 :172-192
[8]   A direct Z-scheme g-C3N4/SnS2 photocatalyst with superior visible-light CO2 reduction performance [J].
Di, Tingmin ;
Zhu, Bicheng ;
Cheng, Bei ;
Yu, Jiaguo ;
Xu, Jingsan .
JOURNAL OF CATALYSIS, 2017, 352 :532-541
[9]   Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications [J].
Dong, Xiaoping ;
Cheng, Fuxing .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (47) :23642-23652
[10]   Visible-light-induced charge transfer pathway and photocatalysis mechanism on Bi semimetal@defective BiOBr hierarchical microspheres [J].
Dong, Xing'an ;
Zhang, Wendong ;
Sun, Yanjuan ;
Li, Jieyuan ;
Cen, Wanglai ;
Cui, Zhihao ;
Huang, Hongwei ;
Dong, Fan .
JOURNAL OF CATALYSIS, 2018, 357 :41-50