Preparation of cotton linter nanowhiskers by high-pressure homogenization process and its application in thermoplastic starch

被引:36
作者
Savadekar, N. R. [1 ]
Karande, V. S. [1 ]
Vigneshwaran, N. [2 ]
Kadam, P. G. [1 ]
Mhaske, S. T. [1 ]
机构
[1] Inst Chem Technol Matunga E, Dept Polymer & Surface Engn Technol, Mumbai 400019, Maharashtra, India
[2] Cent Inst Res Cotton Technol, Nanotechnol Res Grp, Mumbai 400019, Maharashtra, India
关键词
Cotton linter; Starch; Water vapor permeability; Oxygen permeability; Differential scanning calorimetry; NANOCOMPOSITE MATERIALS; CELLULOSE NANOWHISKERS; MECHANICAL-BEHAVIOR; WHISKERS; NANOCRYSTALS; FILMS; FIBERS; ACID;
D O I
10.1007/s13204-014-0316-3
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The present work deals with the preparation of cotton linter nanowhiskers (CLNW) by acid hydrolysis and subsequent processing in a high-pressure homogenizer. Prepared CLNW were then used as a reinforcing material in thermoplastic starch (TPS), with an aim to improve its performance properties. Concentration of CLNW was varied as 0, 1, 2, 3, 4 and 5 wt% in TPS. TPS/CLNW nanocomposite films were prepared by solution-casting process. The nanocomposite films were characterized by tensile, differential scanning calorimetry, scanning electron microscopy (SEM), water vapor permeability (WVP), oxygen permeability (OP), X-ray diffraction and light transmittance properties. 3 wt% CLNW-loaded TPS nanocomposite films demonstrated 88 % improvement in the tensile strength as compared to the pristine TPS polymer film; whereas, WVP and OP decreased by 90 and 92 %, respectively, which is highly appreciable compared to the quantity of CLNW added. DSC thermograms of nanocomposite films did not show any significant effect on melting temperature as compared to the pristine TPS. Light transmittance (Tr) value of TPS decreased with increased content of CLNW. Better interaction between CLNW and TPS, caused due to the hydrophilic nature of both the materials, and uniform distribution of CLNW in TPS were the prime reason for the improvement in properties observed at 3 wt% loading of CLNW in TPS. However, CLNW was seen to have formed agglomerates at higher concentration as determined from SEM analysis. These nanocomposite films can have potential use in food and pharmaceutical packaging applications.
引用
收藏
页码:281 / 290
页数:10
相关论文
共 36 条
[1]   Thermoplastic starch-waxy maize starch nanocrystals nanocomposites [J].
Angellier, H ;
Molina-Boisseau, S ;
Dole, P ;
Dufresne, A .
BIOMACROMOLECULES, 2006, 7 (02) :531-539
[2]   Plasticized starch/tunicin whiskers nanocomposites.: 1.: Structural analysis [J].
Anglès, MN ;
Dufresne, A .
MACROMOLECULES, 2000, 33 (22) :8344-8353
[3]   Plasticized starch/tunicin whiskers nanocomposite materials.: 2.: Mechanical behavior [J].
Anglès, MN ;
Dufresne, A .
MACROMOLECULES, 2001, 34 (09) :2921-2931
[4]   Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J].
Beck-Candanedo, S ;
Roman, M ;
Gray, DG .
BIOMACROMOLECULES, 2005, 6 (02) :1048-1054
[5]   Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J].
Bondeson, D ;
Mathew, A ;
Oksman, K .
CELLULOSE, 2006, 13 (02) :171-180
[6]   New nanocomposite materials reinforced with flax cellulose nanocrystals in waterborne polyurethane [J].
Cao, Xiaodong ;
Dong, Hua ;
Li, Chang Ming .
BIOMACROMOLECULES, 2007, 8 (03) :899-904
[7]   Thermoplastic starch/natural rubber blends [J].
Carvalho, AJF ;
Job, AE ;
Alves, N ;
Curvelo, AAS ;
Gandini, A .
CARBOHYDRATE POLYMERS, 2003, 53 (01) :95-99
[8]  
Chazeau L, 2000, J POLYM SCI POL PHYS, V38, P383, DOI 10.1002/(SICI)1099-0488(20000201)38:3<383::AID-POLB5>3.0.CO
[9]  
2-Q
[10]  
Choi EJ, 1999, J POLYM SCI POL PHYS, V37, P2430, DOI 10.1002/(SICI)1099-0488(19990901)37:17<2430::AID-POLB14>3.0.CO