Continuity of eigenvalues of subordinate processes in domains

被引:19
作者
Chen, ZQ [1 ]
Song, RM
机构
[1] Univ Washington, Dept Math, Seattle, WA 98195 USA
[2] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
D O I
10.1007/s00209-005-0845-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X = {X-t, t >= 0} be a symmetric Markov process in a state space E and D an open set of E. Let S-(n) = {S-t((n)) t >= 0} be a subordinator with Laplace exponent phi(n) and S = {S-t, t >= 0} a subordinator with Laplace exponent phi. Suppose that X is independent of S and S( n). In this paper we consider the subordinate processes X-phi n := {X-St((n)) t >= 0} and X-phi:= {X-St, t >= 0}, and their subprocesses X-phi n,X- D and X-phi,X- D killed upon leaving D. Suppose that the spectra of the semigroups of X-phi n, D and X-phi,X- D are all discrete, with {-lambda(k)(phi n,D) k >= 1} being the eigenvalues of the generator of X-phi n,X-D and {-lambda(k)(phi,D) k >= 1} being the eigenvalues of the generator of X-phi,X-D. We show that, if lim(n-->infinity)phi(n)(lambda) = phi(lambda) for every lambda > 0, then lim(n-->infinity) lambda(k)(phi n,D) = lambda(k)(phi,D) for all k >= 1.
引用
收藏
页码:71 / 89
页数:19
相关论文
共 12 条
[1]  
ADAMS DR, 1996, FUNCTION SPACES POTE
[2]  
[Anonymous], THEOR PROBAB APPL
[3]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[4]  
Bertoin J., 1996, Levy Processes
[5]  
CHEN ZQ, 1994, NAGOYA MATH J, V136, P1
[6]  
CHEN ZQ, 2005, IN PRESS J FUNCT ANA
[7]  
DEBLASSIE RD, 2004, ALPHA CONTINUITY SYM
[8]  
Fukushima M., 2011, De Gruyter Stud. Math., V19
[9]   COMPOSITE MEDIA AND ASYMPTOTIC DIRICHLET FORMS [J].
MOSCO, U .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 123 (02) :368-421
[10]   Recurrence and transience criteria for subordinated symmetric Markov processes [J].
Okura, H .
FORUM MATHEMATICUM, 2002, 14 (01) :121-146