Using Compression Codes in Compressed Sensing

被引:0
|
作者
Rezagah, Farideh Ebrahim [1 ]
Jalali, Shirin [2 ]
Erkip, Elza [1 ]
Poor, H. Vincent [3 ]
机构
[1] NYU, Tandon Sch Engn, New York, NY 10003 USA
[2] Nokia Bell Labs, Murray Hill, NJ USA
[3] Princeton Univ, Dept Elect Engn, Princeton, NJ 08544 USA
来源
2016 IEEE INFORMATION THEORY WORKSHOP (ITW) | 2016年
关键词
Compressed Sensing; Lossy Compression; Universal coding; Rate distortion dimension; Information dimension; FIDELITY-CRITERION; ERROR EXPONENT; DIMENSION; RECOVERY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Data compression and compressed sensing algorithms exploit the structure present in a signal for its efficient representation and measurement, respectively. While most state-of-the- art data compression codes take advantage of complex patterns present in signals of interest, this is not the case in compressed sensing. This paper explores usage of efficient data compression codes in building compressed sensing recovery methods for stochastic processes. It is proved that for an i.i.d. process, compression-based compressed sensing achieves the fundamental limits in terms of the number of measurements. It is also proved that compressed sensing recovery methods built based on a family of universal compression codes yield a family of universal compressed sensing schemes.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Compression-Based Compressed Sensing
    Rezagah, Farideh E.
    Jalali, Shirin
    Erkip, Elza
    Poor, H. Vincent
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (10) : 6735 - 6752
  • [2] From compression to compressed sensing
    Jalali, Shirin
    Maleki, Arian
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016, 40 (02) : 352 - 385
  • [3] LDPC Codes for Compressed Sensing
    Dimakis, Alexandros G.
    Smarandache, Roxana
    Vontobel, Pascal O.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2012, 58 (05) : 3093 - 3114
  • [4] Universal Compressed Sensing
    Jalali, Shirin
    Poor, H. Vincent
    2016 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2016, : 2369 - 2373
  • [5] Lossy Audio Compression Via Compressed Sensing
    de Medeiros, Rubem J. V.
    Gurjao, Edmar C.
    de Carvalho, Joao M.
    2010 DATA COMPRESSION CONFERENCE (DCC 2010), 2010, : 545 - 545
  • [6] Efficient compression and reconstruction of speech signals using compressed sensing
    Shawky H.
    Abd-Elnaby M.
    Rihan M.
    Nassar M.A.
    El-Fishawy A.S.
    El-Samie F.E.A.
    International Journal of Speech Technology, 2017, 20 (4) : 851 - 857
  • [7] Optimized Image Compression Using Multiple Compressed Sensing Techniques
    Kiran Puttegowda
    B. A. Mohan
    V. Veeraprathap
    C. P. Vijay
    K. V. Sudheesh
    D. S. Sunil Kumar
    SN Computer Science, 6 (4)
  • [8] Applications of Compressed Sensing: Compression and Encryption
    Fira, Monica
    2015 E-HEALTH AND BIOENGINEERING CONFERENCE (EHB), 2015,
  • [9] Image Compression Using Wavelet Based Compressed Sensing and Vector Quantization
    Kalra, Mohit
    Ghosh, D.
    PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 640 - 645
  • [10] Onboard Hyperspectral Image Compression Using Compressed Sensing and Deep Learning
    Kumar, Saurabh
    Chaudhuri, Subhasis
    Banerjee, Biplab
    Ali, Feroz
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT II, 2019, 11130 : 30 - 42