Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI

被引:33
|
作者
Meier, Dominik S. [2 ,4 ,6 ]
Guttmann, Charles R. G. [5 ]
Tummala, Subhash [2 ,3 ,4 ]
Moscufo, Nicola
Cavallari, Michele
Tauhid, Shahamat [2 ,3 ,4 ]
Bakshi, Rohit [1 ,2 ,3 ,4 ,5 ]
Weiner, Howard L. [1 ,2 ,4 ]
机构
[1] Harvard Med Sch, Partners Multiple Sclerosis Ctr, Brigham & Womens Hosp, Boston, MA USA
[2] Harvard Med Sch, Ann Romney Ctr Neurol Dis, Brigham & Womens Hosp, Boston, MA USA
[3] Harvard Med Sch, Lab Neuroimaging Res, Brigham & Womens Hosp, Boston, MA USA
[4] Harvard Med Sch, Dept Neurol, Brigham & Womens Hosp, Boston, MA USA
[5] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Boston, MA USA
[6] Univ Hosp Basel, Med Image Anal Ctr, Basel, Switzerland
关键词
Magnetic resonance imaging; multiple sclerosis; medical image analysis; brain morphometry; imaging biomarker; WHITE-MATTER LESIONS; DEEP GRAY-MATTER; AUTOMATIC SEGMENTATION; ATROPHY; TISSUE; VOLUME; IMAGES;
D O I
10.1111/jon.12491
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSEA pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high-resolution 3-dimensional T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume. METHODSTo address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D-FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan-rescans. RESULTSIntraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false-positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan-rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 .72 mL over a range of 0-24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls). CONCLUSIONSThis pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 50 条
  • [41] Axial 3D gradient-echo imaging for improved multiple sclerosis lesion detection in the cervical spinal cord at 3T
    Arzu Ozturk
    Nafi Aygun
    Seth A. Smith
    Brian Caffo
    Peter A. Calabresi
    Daniel S. Reich
    Neuroradiology, 2013, 55 : 431 - 439
  • [42] Knowledge-based 3D segmentation of the brain in MR images for quantitative multiple sclerosis lesion tracking
    Fisher, E
    Cothren, RM
    Tkach, JA
    Masaryk, TJ
    Cornhill, JF
    IMAGE PROCESSING - MEDICAL IMAGING 1997, PTS 1 AND 2, 1997, 3034 : 19 - 25
  • [43] Axial 3D gradient-echo imaging for improved multiple sclerosis lesion detection in the cervical spinal cord at 3T
    Ozturk, Arzu
    Aygun, Nafi
    Smith, Seth A.
    Caffo, Brian
    Calabresi, Peter A.
    Reich, Daniel S.
    NEURORADIOLOGY, 2013, 55 (04) : 431 - 439
  • [44] New lesion segmentation for multiple sclerosis brain images with imaging and lesion-aware augmentation
    Basaran, Berke Doga
    Matthews, Paul M.
    Bai, Wenjia
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [45] Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI
    Doss, D. J.
    Johnson, G. W.
    Narasimhan, S.
    Shless, J. S.
    Jiang, J. W.
    Gonzaez, H. F. J.
    Paulo, D. L.
    Lucas, A.
    Davis, K. A.
    Chang, C.
    Morgan, V. L.
    Constantinidis, C.
    Dawant, B. M.
    Englot, D. J.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2023, 44 (09) : 1020 - 1025
  • [46] The role of MRI of the brain and spinal cord, and CSF examination for the diagnosis of primary progressive multiple sclerosis
    Nilsson, P.
    Sandberg-Wollheim, M.
    Norrving, B.
    Larsson, E. -M.
    EUROPEAN JOURNAL OF NEUROLOGY, 2007, 14 (11) : 1292 - 1295
  • [47] A Novel Multi-Atlas and Multi-Channel (MAMC) Approach for Multiple Sclerosis Lesion Segmentation in Brain MRI
    Hu, Changjun
    Song, Liansong
    Liu, Meiru
    Wang, Jingjing
    Zhang, Liren
    ISICDM 2018: PROCEEDINGS OF THE 2ND INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE, 2018, : 106 - 112
  • [48] A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI
    Pachai, C
    Zhu, YM
    Grimaud, J
    Hermier, M
    Dromigny-Badin, A
    Boudraa, A
    Gimenez, G
    Confavreux, C
    Froment, JC
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 1998, 22 (05) : 399 - 408
  • [49] Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches
    Llado, Xavier
    Oliver, Arnau
    Cabezas, Mariano
    Freixenet, Jordi
    Vilanova, Joan C.
    Quiles, Ana
    Valls, Laia
    Ramio-Torrenta, Lluis
    Rovira, Alex
    INFORMATION SCIENCES, 2012, 186 (01) : 164 - 185
  • [50] A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis
    Cerri, Stefano
    Hoopes, Andrew
    Greve, Douglas N.
    Muhlau, Mark
    Van Leemput, Koen
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 119 - 128