Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI

被引:33
|
作者
Meier, Dominik S. [2 ,4 ,6 ]
Guttmann, Charles R. G. [5 ]
Tummala, Subhash [2 ,3 ,4 ]
Moscufo, Nicola
Cavallari, Michele
Tauhid, Shahamat [2 ,3 ,4 ]
Bakshi, Rohit [1 ,2 ,3 ,4 ,5 ]
Weiner, Howard L. [1 ,2 ,4 ]
机构
[1] Harvard Med Sch, Partners Multiple Sclerosis Ctr, Brigham & Womens Hosp, Boston, MA USA
[2] Harvard Med Sch, Ann Romney Ctr Neurol Dis, Brigham & Womens Hosp, Boston, MA USA
[3] Harvard Med Sch, Lab Neuroimaging Res, Brigham & Womens Hosp, Boston, MA USA
[4] Harvard Med Sch, Dept Neurol, Brigham & Womens Hosp, Boston, MA USA
[5] Harvard Med Sch, Dept Radiol, Brigham & Womens Hosp, Boston, MA USA
[6] Univ Hosp Basel, Med Image Anal Ctr, Basel, Switzerland
关键词
Magnetic resonance imaging; multiple sclerosis; medical image analysis; brain morphometry; imaging biomarker; WHITE-MATTER LESIONS; DEEP GRAY-MATTER; AUTOMATIC SEGMENTATION; ATROPHY; TISSUE; VOLUME; IMAGES;
D O I
10.1111/jon.12491
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
BACKGROUND AND PURPOSEA pipeline for fully automated segmentation of 3T brain MRI scans in multiple sclerosis (MS) is presented. This 3T morphometry (3TM) pipeline provides indicators of MS disease progression from multichannel datasets with high-resolution 3-dimensional T1-weighted, T2-weighted, and fluid-attenuated inversion-recovery (FLAIR) contrast. 3TM segments white (WM) and gray matter (GM) and cerebrospinal fluid (CSF) to assess atrophy and provides WM lesion (WML) volume. METHODSTo address nonuniform distribution of noise/contrast (eg, posterior fossa in 3D-FLAIR) of 3T magnetic resonance imaging, the method employs dual sensitivity (different sensitivities for lesion detection in predefined regions). We tested this approach by assigning different sensitivities to supratentorial and infratentorial regions, and validated the segmentation for accuracy against manual delineation, and for precision in scan-rescans. RESULTSIntraclass correlation coefficients of .95, .91, and .86 were observed for WML and CSF segmentation accuracy and brain parenchymal fraction (BPF). Dual sensitivity significantly reduced infratentorial false-positive WMLs, affording increases in global sensitivity without decreasing specificity. Scan-rescan yielded coefficients of variation (COVs) of 8% and .4% for WMLs and BPF and COVs of .8%, 1%, and 2% for GM, WM, and CSF volumes. WML volume difference/precision was .49 .72 mL over a range of 0-24 mL. Correlation between BPF and age was r = .62 (P = .0004), and effect size for detecting brain atrophy was Cohen's d = 1.26 (standardized mean difference vs. healthy controls). CONCLUSIONSThis pipeline produces probability maps for brain lesions and tissue classes, facilitating expert review/correction and may provide high throughput, efficient characterization of MS in large datasets.
引用
收藏
页码:36 / 47
页数:12
相关论文
共 50 条
  • [31] Learning-Based 3T Brain MRI Segmentation with Guidance from 7T MRI Labeling
    Yu, Renping
    Deng, Minghui
    Yap, Pew-Thian
    Wei, Zhihui
    Wang, Li
    Shen, Dinggang
    MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2016, 2016, 10019 : 213 - 220
  • [32] Whole-brain atrophy assessed by proportional- versus registration-based pipelines from 3T MRI in multiple sclerosis
    Hemond, Christopher C.
    Chu, Renxin
    Tummala, Subhash
    Tauhid, Shahamat
    Healy, Brian C.
    Bakshi, Rohit
    BRAIN AND BEHAVIOR, 2018, 8 (08):
  • [33] An Adaptive Semi-automated Integrated System for Multiple Sclerosis Lesion Segmentation in Longitudinal MRI Scans Based on a Convolutional Neural Network
    Georgiou, Andreas
    Loizou, Christos P.
    Nicolaou, Andria
    Pantzaris, Marios
    Pattichis, Constantinos S.
    COMPUTER ANALYSIS OF IMAGES AND PATTERNS, CAIP 2021, PT 1, 2021, 13052 : 256 - 265
  • [34] The influence of slice orientation on brain MRI lesion load measurement in multiple sclerosis
    Rovaris, M
    Sormani, MP
    Rocca, MA
    Comi, G
    Filippi, M
    MULTIPLE SCLEROSIS, 1997, 3 (06): : 382 - 384
  • [35] MRBrainS Challenge: Online Evaluation Framework for Brain Image Segmentation in 3T MRI Scans
    Mendrik, Adrienne M.
    Vincken, Koen L.
    Kuijf, Hugo J.
    Breeuwer, Marcel
    Bouvy, Willem H.
    de Bresser, Jeroen
    Alansary, Amir
    de Bruijne, Marleen
    Carass, Aaron
    El-Baz, Ayman
    Jog, Amod
    Katyal, Ranveer
    Khan, Ali R.
    van der Lijn, Fedde
    Mahmood, Qaiser
    Mukherjee, Ryan
    van Opbroek, Annegreet
    Paneri, Sahil
    Pereira, Sergio
    Persson, Mikael
    Rajchl, Martin
    Sarikaya, Duygu
    Smedby, Orjan
    Silva, Carlos A.
    Vrooman, Henri A.
    Vyas, Saurabh
    Wang, Chunliang
    Zhao, Liang
    Biessels, Geert Jan
    Viergever, Max A.
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [36] A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging: Application in a Multicenter Context
    Storelli, L.
    Pagani, E.
    Rocca, M. A.
    Horsfield, M. A.
    Gallo, A.
    Bisecco, A.
    Battaglini, M.
    De Stefano, N.
    Vrenken, H.
    Thomas, D. L.
    Mancini, L.
    Ropele, S.
    Enzinger, C.
    Preziosa, P.
    Filippi, M.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2016, 37 (11) : 2043 - 2049
  • [37] MARKOVIAN SEGMENTATION OF 3D BRAIN MRI TO DETECT MULTIPLE SCLEROSIS LESIONS
    Bricq, S.
    Collet, Ch.
    Armspach, J. -P.
    2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 733 - 736
  • [38] Improved CSF classification and lesion detection in MR brain images with Multiple Sclerosis
    Wolff, Yulian
    Miron, Shmuel
    Achiron, Anat
    Greenspan, Hayit
    MEDICAL IMAGING 2007: IMAGE PROCESSING, PTS 1-3, 2007, 6512
  • [39] MRI Acquisition and Analysis Protocol for In Vivo Intraorbital Optic Nerve Segmentation at 3T
    Yiannakas, Marios C.
    Toosy, Ahmed T.
    Raftopoulos, Rhian E.
    Kapoor, Raj
    Miller, David H.
    Wheeler-Kingshott, Claudia A. M.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (06) : 4235 - 4240
  • [40] Serial MRI in multiple sclerosis: a prospective pilot study of lesion load, whole brain volume and thalamic atrophy
    Taylor, I
    Butzkueven, H
    Litewka, L
    MacGregor, LR
    Szoeke, C
    Cook, M
    Mitchell, P
    Kilpatrick, TJ
    Tubridy, N
    JOURNAL OF CLINICAL NEUROSCIENCE, 2004, 11 (02) : 153 - 158